Insights Into Phylogeny, Diversity and Functional Potential of Poseidoniales Viruses.

Environ Microbiol

School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia.

Published: January 2025

Viruses infecting archaea play significant ecological roles in marine ecosystems through host infection and lysis, yet they have remained an underexplored component of the virosphere. In this study, we recovered 451 archaeal viruses from a subtropical estuary, identifying 63 that are associated with the dominant marine order Poseidoniales (Marine Group II Archaea). Phylogenetic analyses of a subset of complete and nearly-complete viral genomes assigned these viruses to the order Magrovirales, a lineage of Poseidoniales viruses, and identified a novel group of viruses distinct from Magrovirales. Utilising demarcation criteria established for the classification of archaeal tailed viruses, we propose two families within the order Magrovirales: Apasviridae (magrovirus group A), comprising the genera Agnivirus and Savitrvirus, and Krittikaviridae (magrovirus group E) encompassing the genus Velanvirus. Additionally, we propose a new order, distinct from Magrovirales, named Adrikavirales, which includes the genus Vyasavirus. Our detailed genomic characterisation of the new viral lineages revealed genes involved in viral assembly and egress, such as those responsible for creating holin rafts to lyse host cell membranes, a feature predominantly known from bacteriophages. Furthermore, we identified a broad spectrum of auxiliary metabolic genes, suggesting that these viruses can modulate host metabolism. Collectively, our findings substantially enhance the current understanding of the diversity and functional potential of Poseidoniales viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.70017DOI Listing

Publication Analysis

Top Keywords

poseidoniales viruses
12
viruses
9
diversity functional
8
functional potential
8
potential poseidoniales
8
order magrovirales
8
distinct magrovirales
8
magrovirus group
8
insights phylogeny
4
phylogeny diversity
4

Similar Publications

Insights Into Phylogeny, Diversity and Functional Potential of Poseidoniales Viruses.

Environ Microbiol

January 2025

School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia.

Viruses infecting archaea play significant ecological roles in marine ecosystems through host infection and lysis, yet they have remained an underexplored component of the virosphere. In this study, we recovered 451 archaeal viruses from a subtropical estuary, identifying 63 that are associated with the dominant marine order Poseidoniales (Marine Group II Archaea). Phylogenetic analyses of a subset of complete and nearly-complete viral genomes assigned these viruses to the order Magrovirales, a lineage of Poseidoniales viruses, and identified a novel group of viruses distinct from Magrovirales.

View Article and Find Full Text PDF

Exploring the Archaeal Virosphere by Metagenomics.

Methods Mol Biol

December 2023

Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France.

During the past decade, environmental research has demonstrated that archaea are abundant and widespread in nature and play important ecological roles at a global scale. Currently, however, the majority of archaeal lineages cannot be cultivated under laboratory conditions and are known exclusively or nearly exclusively through metagenomics. A similar trend extends to the archaeal virosphere, where isolated representatives are available for a handful of model archaeal virus-host systems.

View Article and Find Full Text PDF

Diversity, distribution, and functional potentials of magroviruses from marine and brackish waters.

Front Microbiol

April 2023

Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

Marine group II (MGII) archaea ( Poseidoniales) are among the most abundant microbes in global oceanic surface waters and play an important role in driving marine biogeochemical cycles. Magroviruses - the viruses of MGII archaea have been recently found to occur ubiquitously in surface ocean. However, their diversity, distribution, and potential ecological functions in coastal zones especially brackish waters are unknown.

View Article and Find Full Text PDF

During the past decade, metagenomics became a method of choice for the discovery of novel viruses. However, host assignment for uncultured viruses remains challenging, especially for archaeal viruses, which are grossly undersampled compared to viruses of bacteria and eukaryotes. Here, we assessed the utility of CRISPR spacer targeting, tRNA gene matching and homology searches for viral signature proteins, such as major capsid proteins, for the assignment of archaeal hosts and validated these approaches on metaviromes from Yangshan Harbor (YSH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!