Investigating the Role of Aniline Structure in Improving Proton Exchange Membranes for High Conductivity.

Macromol Rapid Commun

College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China.

Published: January 2025

Polybenzothiazole exhibits high proton conductivity; however, its rigid backbone limits its applicability, necessitating processes such as modification or doping. The aniline structure can participate in various reactions, including nucleophilic or electrophilic substitution reactions, salt formation, and acylation reactions. In this experiment, an aniline structure is integrated into the main chain of sulfonated polybenzothiazole to investigate the potential of aniline for enhancing proton exchange membranes. The incorporation of the aniline structure is confirmed through infrared and nuclear magnetic resonance analyses. A comparison of different proportions of aniline revealed that 12.5% aniline increased the tensile modulus to 274.40 MPa and the elongation at break to 6.26%. Furthermore, the water absorption rate reached 65.73%, while the expansion rate remained at 25%. The aniline structure exhibits inherent basicity and utilizes phosphoric acid adsorption to enhance proton conductivity. After aniline adsorbs phosphoric acid, the proton conductivity peaks at 0.157 S cm. Additionally, the introduction of amino groups provides further modification potential to the main chain of polybenzothiazole.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202400900DOI Listing

Publication Analysis

Top Keywords

aniline structure
20
proton conductivity
12
aniline
9
proton exchange
8
exchange membranes
8
main chain
8
phosphoric acid
8
structure
5
proton
5
investigating role
4

Similar Publications

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Investigating the Role of Aniline Structure in Improving Proton Exchange Membranes for High Conductivity.

Macromol Rapid Commun

January 2025

College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China.

Polybenzothiazole exhibits high proton conductivity; however, its rigid backbone limits its applicability, necessitating processes such as modification or doping. The aniline structure can participate in various reactions, including nucleophilic or electrophilic substitution reactions, salt formation, and acylation reactions. In this experiment, an aniline structure is integrated into the main chain of sulfonated polybenzothiazole to investigate the potential of aniline for enhancing proton exchange membranes.

View Article and Find Full Text PDF

3-Iodo-aniline.

IUCrdata

December 2024

Nelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa.

The title compound, CHIN, is the -iodinated derivative of aniline. The asymmetric unit contains two mol-ecules. The structure was refined as a two-component inversion twin with a volume ratio of 55.

View Article and Find Full Text PDF

Dirhodium-Palladium Dual-Catalyzed [1 + 1 + 3] Annulation to Heterocycles Using Primary Amines or HO as the Heteroatom Sources.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The ever-increasing demand in chemical biology and medicinal research requires the development of new synthetic methods for the rapid construction of libraries of heterocycles from simple raw materials. In this context, the utilization of primary amines or HO as the simple - or -sources in the assembly of a heterocyclic ring skeleton is highly desirable from the viewpoint of atom- and step-economy. Herein, we describe a highly efficient three-component reaction of diazo, allylic diacetates, and commercially available anilines (or HO) to access structurally diverse pyrrolidine and tetrahydrofuran derivatives.

View Article and Find Full Text PDF

Linkage Regulation of β-Ketoamine Covalent Organic Frameworks for Boosting Photocatalytic Overall Water Splitting.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China.

Two dimensional β-ketoamine covalent organic frameworks (2D TP-COFs) are one category of promising metal-free catalysts for photocatalytic overall water splitting (OWS) because of their unusual stability and versatile electronic/optical properties. However, none of the currently reported TP-COFs can accomplish the hydrogen evolution (HER) and oxygen evolution reactions (OER) simultaneously without adding any sacrificial agents and cocatalysts. To address this challenging issue, we rationally designed 23 2D TP-COFs by regulating the linkage groups and comprehensively evaluated their OWS activity by using the first-principles method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!