Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor. Moreover, real-time tracking of SRF loci in live cell nuclei demonstrated that the chromatin residence time of SRF was reduced by IPMK depletion in fibroblasts. Conversely, elevated IPMK levels extended the SRF-chromatin association. We identified that IPMK binds to the intrinsically disordered region of SRF, which is required for the IPMK-induced stable interaction of SRF with DNA. IPMK-mediated conformational changes in SRF were observed by single-molecule fluorescence resonance energy transfer assays. Therefore, our findings demonstrate that IPMK is a critical factor for promoting high-affinity SRF-chromatin association and provide insights into the mechanisms of SRF-dependent transcription control via chaperone-like activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/nar/gkae1281 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704961 | PMC |
Nucleic Acids Res
January 2025
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.
The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA.
Eye diseases such as age-related macular degeneration (AMD) are major causes of irreversible vision loss. Early and accurate detection of these diseases is essential for effective management. Optical coherence tomography (OCT) imaging provides clinicians with in vivo, cross-sectional views of the retina, enabling the identification of key pathological features.
View Article and Find Full Text PDFBiomedicines
December 2024
Tel Aviv Medical Center, Department of Ophthalmology, Tel Aviv University, Tel Aviv 6423906, Israel.
Background/objectives: To evaluate the impact of intravitreal bevacizumab (IVB) therapy on anatomical and visual outcomes in patients with macular neovascularization (MNV) secondary to chronic central serous chorioretinopathy (cCSC).
Methods: This retrospective observational study reviewed the medical records of treatment-naïve patients diagnosed with cCSC complicated by MNV and treated with IVB injections over a 5-year period. The presence of MNV was confirmed using optical coherence tomography angiography (OCTA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!