Background: Long-term durability of a restoration relies on the marginal integrity and its ability to withstand the occlusal forces. Fiber-reinforced composites (FRCs) exhibited superior properties in terms of fracture toughness, flexural strength, and wear resistance.

Aim: The aim of this study was to assess and compare marginal adaptation and microtensile bond strength (µTBS) of posterior FRCs comparing with a condensable composite.

Materials And Methods: Standardized mesio- and disto-occlusal cavities were prepared on 60 maxillary molars with 3.5 mm pulpal floor depth, 3 mm buccolingual width, and 1.5 mm axial depth. The mesial cavities were restored with everX Posterior and Build-It FRCs, while distal cavities of all teeth were restored with Alert composite and were thermomechanically aged. Half of the specimens from each group ( = 15) were evaluated for marginal adaptation under scanning electron microscope (SEM), and the other half were sectioned for μTBS testing with Instron testing machine. Bond failure mode was examined under SEM.

Results: Marginal microgaps were significantly high for the Alert group than FRC groups. Gingival surface showed more gaps. Mean µTBS values were significantly high for FRCs. Cohesive failures are more among FRCs, and adhesive failures are more in condensable composite.

Conclusion: The short FRCs showed superior marginal adaptation and better bond strength than condensable composite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702884PMC
http://dx.doi.org/10.4103/JCDE.JCDE_515_24DOI Listing

Publication Analysis

Top Keywords

marginal adaptation
16
bond strength
12
microtensile bond
8
fiber-reinforced composites
8
marginal
6
frcs
6
evaluation microtensile
4
bond
4
strength
4
strength marginal
4

Similar Publications

Impacts of limits to adaptation on population and community persistence in a changing environment.

Philos Trans R Soc Lond B Biol Sci

January 2025

Department of Genetics, Evolution and Environment, University College London, London, UK.

A key issue in predicting how ecosystems will respond to environmental change is understanding why populations and communities are able to live and reproduce in some parts of ecological and geographical space, but not in others. The limits to adaptation that cause ecological niches to vary in position and width across taxa and environmental contexts determine how communities and ecosystems emerge from selection on phenotypes and genomes. Ecological trade-offs mean that phenotypes can only be optimal in some environments unless these trade-offs can be reshaped through evolution.

View Article and Find Full Text PDF

Effect of crystallization and finish line curvature on the marginal integrity of lithium disilicate crowns.

J Prosthodont

January 2025

Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.

Purpose: This study aimed to investigate the effect of crystallization and finish line curvature on the integrity of lithium disilicate crowns fabricated by using partially crystallized (P) and fully crystallized (F) blocks.

Materials And Methods: Forty-eight lithium disilicate crowns were fabricated based on the designated lithium disilicate blocks and finish line curvatures. The specimens were divided into four groups (n = 12 each): P block with a curved finish line (PC), P block with a straight finish line (PS), F block with a curved finish line (FC), and F block with a straight finish line (FS).

View Article and Find Full Text PDF

Background: Long-term durability of a restoration relies on the marginal integrity and its ability to withstand the occlusal forces. Fiber-reinforced composites (FRCs) exhibited superior properties in terms of fracture toughness, flexural strength, and wear resistance.

Aim: The aim of this study was to assess and compare marginal adaptation and microtensile bond strength (µTBS) of posterior FRCs comparing with a condensable composite.

View Article and Find Full Text PDF

Aims: This pilot study aimed to compare the marginal adaptation of composite resin at the tooth-restoration interface, before and after radiation.

Subjects And Methods: Fifteen extracted premolars were divided into 2 experimental groups (based on the timing of irradiation) and 1 control group of 5 teeth each. In Group I (control group), teeth were restored but not exposed to radiation at any stage, Group II: teeth were irradiated before cavity preparation and restoration, and Group III: after cavity preparation and restoration employing selective etch technique, teeth were exposed to radiation.

View Article and Find Full Text PDF

The clinical performance of high-viscosity glass ionomer-based and bulk-fill resin-based restorations in permanent teeth with occlusal or proximal cavities: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Objectives: To summarize and analyze existing evidence regarding the clinical performance of high-viscosity glass-ionomer-based materials (HVGIs) and bulk-fill resin-based composites (BFs) in patients with occlusal or proximal cavities in permanent teeth.

Materials And Methods: A literature search was conducted using PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, Scopus, and Web of Science (WOS) (last update: April 19th, 2024). Randomized control trials (RCTs), retrospective and prospective comparative cohorts were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!