Microbial communities are crucial for important ecosystem functions in the open ocean, such as primary production and nutrient cycling. However, few studies have addressed the distribution of microplankton communities in the remote oligotrophic region of the Pacific Ocean. Moreover, the biogeochemical and physical drivers of microbial community structure are not fully understood in these areas. This research aims to investigate the patterns of prokaryotic and protists communities' distribution in the North Pacific Subtropical Front (NPSF). The NPSF is a vast oligotrophic region with layered surface water and strong ocean currents. Despite its considerable size, its community distribution and function are poorly studied. We used a 16S and 18S rRNA gene sequencing approach to identify and characterize the water column microbial communities at two depths, the surface (3-5 m) and the deep chlorophyll maximum (DCM, 108-130 m). We aimed to elucidate the horizontal distribution patterns of these communities and to dissect the factors intricately shaping their distribution in the NPSF. Results showed that the community structure of both prokaryotes and protists was significantly influenced by depth, temperature, and longitude. Regarding alpha diversity, both communities presented a higher diversity at the surface. The prokaryotes also demonstrated to have a higher diversity in samples placed further east. The prokaryotes were dominated by Proteobacteria and Cyanobacteria, and the eukaryotic communities were dominated by Syndiniales. Combining biological and hydrographic data analysis showed the influence of vertical currents near the frontal jet in shaping the vertical distribution of both prokaryotic and protist communities. Even though most studies do not consider anomalies that emerge at each depth, these occurrences are capable of having a strong impact and influence on community structure. This study marks a significant advance in unraveling the intricate community structure and distribution dynamics of marine microbial communities within the North Pacific Ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703956 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1455196 | DOI Listing |
Stroke
January 2025
Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom. (D.M.K., P.M.R.).
Cardiovascular diseases such as stroke are a major cause of morbidity and mortality for patients with chronic kidney disease (CKD). The underlying mechanisms connecting CKD and cardiovascular disease are yet to be fully elucidated, but inflammation is proposed to play an important role based on genetic association studies, studies of inflammatory biomarkers, and clinical trials of anti-inflammatory drug targets. There are multiple sources of both endogenous and exogenous inflammation in CKD, including increased production and decreased clearance of proinflammatory cytokines, oxidative stress, metabolic acidosis, chronic and recurrent infections, dialysis access, changes in adipose tissue metabolism, and disruptions in intestinal microbiota.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.
The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.
View Article and Find Full Text PDFFront Allergy
January 2025
Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy.
The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.
Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).
Front Immunol
January 2025
Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!