A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel approach to identify optimal metabotypes of elongase and desaturase activities in prevention of acute coronary syndrome. | LitMetric

Both metabolomic and genomic approaches are valuable for risk analysis, however typical approaches evaluating differences in means do not model the changes well. Gene polymorphisms that alter function would appear as distinct populations, or metabotypes, from the predominant one, in which case risk is revealed as changed mixing proportions between control and case samples. Here we validate a model accounting for mixed populations using biomarkers of fatty acid metabolism derived from a case/control study of acute coronary syndrome subjects in which both metabolomic and genomic approaches have been used previously. We first used simulated data to show improved power and sensitivity in the approach compared to classic approaches. We then used the metabolic biomarkers to test for evidence of distinct metabotypes and different proportions among cases and controls. In simulation, our model outperformed all other approaches including Mann-Whitney, -tests, and χ. Using real data, we found distinct metabotypes of six of the seven activities tested, and different mixing proportions in five of the six activity biomarkers: D9D, ELOVL6, ELOVL5, FADS1, and Sprecher pathway chain shortening (SCS). High activity metabotypes of non-essential fatty acids and SCS decreased odds for acute coronary syndrome (ACS), however high activity metabotypes of 20-carbon fatty acid synthesis increased odds. Our study validates an approach that accounts for both metabolomic and genomic theory by demonstrating improved sensitivity and specificity, better performance in real world data, and more straightforward interpretability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706515PMC
http://dx.doi.org/10.1007/s11306-015-0787-6DOI Listing

Publication Analysis

Top Keywords

acute coronary
12
coronary syndrome
12
metabolomic genomic
12
genomic approaches
8
mixing proportions
8
fatty acid
8
distinct metabotypes
8
real data
8
high activity
8
activity metabotypes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!