GYY4137 protects against type 2 diabetes mellitus-associated myocardial autophagy by suppressing FOXO1 signal pathway.

Anim Cells Syst (Seoul)

Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People's Republic of China.

Published: December 2024

Diabetic cardiomyopathy (DCM) is a major complication of type 2 diabetes mellitus (T2DM), but its effective prevention and treatment are still limited. We investigated the effects of GYY4137, a slow-releasing hydrogen sulfide donor, and its downstream mediator forkhead box protein O1 (FOXO1) on T2DM-associated DCM. , T2DM mice were induced by a high-fat diet coupled with streptozotocin injection. Intragastric administration of GYY4137 was also performed. , AC16 cardiomyocytes were treated with glucose and palmitate to mimic high-glucose and high-fat (HGHF) conditions, in which GYY4137 or a FOXO1 inhibitor (AS1842856) was also introduced. Bioinformatics analysis was performed using public GEO datasets. : GYY4137 demonstrated a protective effect against cardiac dysfunction, fibrosis, and autophagy in cardiac tissues of T2DM mice. Moreover, GYY4137 alleviated cell injury and lipid accumulation in HGHF-treated AC16 cells. In both and models, hyperactivation of autophagy was dampened by GYY4137. Bioinformatic analysis revealed the potential role of the FOXO pathway and autophagy in DCM. Further experiments showed that GYY4137 rescued diabetes-induced overexpression of FOXO1. AS1842856 displayed a notable capacity to shield cardiomyocytes against diabetes-induced injury similar to that achieved by GYY4137. GYY4137 protected against cardiac dysfunction and fibrosis in T2DM mice, and the mechanism might involve suppression of FOXO1-induced autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703514PMC
http://dx.doi.org/10.1080/19768354.2024.2442398DOI Listing

Publication Analysis

Top Keywords

t2dm mice
12
gyy4137
10
type diabetes
8
cardiac dysfunction
8
dysfunction fibrosis
8
autophagy
5
gyy4137 protects
4
protects type
4
diabetes mellitus-associated
4
mellitus-associated myocardial
4

Similar Publications

Nicotinamide n-methyltransferase inhibitor synergizes with sodium-glucose cotransporter 2 inhibitor to protect renal tubular epithelium in experimental models of type 2 diabetes mellitus.

J Diabetes Complications

January 2025

Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China. Electronic address:

Aims: We aim to explore the potential of nicotinamide n-methyltransferase (NNMT) as a sensitive marker of renal tubular injury and the possibility of an NNMT inhibitor to combine with sodium-glucose cotransporter 2 (SGLT2) inhibitor to protect proximal tubular epithelium in vivo and in vitro model of Type 2 diabetes mellitus (T2DM), respectively.

Methods: In vivo, immunohistochemical staining, Masson's trichrome staining and Sirius red staining were used to observe the changes of NNMT expression, renal tubular injury and interstitial fibrosis in renal tissue from the db/db mice. Bioinformatic analysis was also conducted to broaden the range of data validation.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice.

View Article and Find Full Text PDF

Atherosclerosis, a chronic inflammatory condition characterized by plaque formation, often leads to instability, particularly under Type 2 diabetes mellitus (T2DM) conditions, which exacerbate cardiovascular risks. However, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the correlation between acute coronary syndrome (ACS) and serum levels of Nε-carboxyethyl-lysin (CEL), a prominent advanced glycation end product (AGE) elevated in T2DM, in a cohort of 225 patients with coronary artery disease.

View Article and Find Full Text PDF

Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A.

Diabetes Metab J

January 2025

NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.

Background: In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.

View Article and Find Full Text PDF

Prospective role of lupeol from Pterocarpus santalinus leaf against diabetes: An in vitro, in silico, and in vivo investigation.

Comput Biol Med

January 2025

Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh. Electronic address:

Diabetes mellitus (DM) can be treated with various medications. However, individuals in underdeveloped countries may face challenges in using these treatments due to side effects and high costs. Anti-diabetic medications can inhibit enzymes, such as α-amylase, which is responsible for breaking down carbohydrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!