Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The emergence of colistin resistance threatens the treatment of infections.
Methods: In this study, in vitro development of colistin resistance was investigated using comparative phenotypic and proteomic analysis of ATCC 9027, its 14-day colistin sub-MIC exposed strain (Col-E1), and 10-day antibiotic-free cultured Col-E1 strain (Col-E2). Antibiotic susceptibility, morphology, virulence factors, and proteomic changes were assessed using disc-diffusion, agar-based, spectrophotometry, SEM, and iTRAQ-LC-MS/MS methods.
Results: Colistin-exposed strains decreased susceptibility to colistin while remaining susceptible to other antibiotics. Col-E1 reduced the cell lengths by 17.67% and the colony size by 36.16% compared to the initial strain. The reduction remained in Col-E2. The pyocyanin production was reduced in Col-E1 (p=0.025, Tukey HSD) and increased again in Col-E2 (p=0.005, Tukey HSD). In contrast, no significant changes in elastase, protease, rhamnolipid, pyoverdine, and biofilm production were observed (p>0.05, Tukey HSD). In Col-E1, the proteome analysis showed 135 differentially expressed proteins (DEPs) of which 94 DEPs (69.23%) maintained their expression change in Col-E2. Among DEPs, 82 were involved in metabolism and protein synthesis. Some DEPs (6/135) played a role in stress response such as GrpE (fold change: 14.93) and Hmp (fold change: 12.08). In particular, membrane proteins like OprD, DdlB, and OprI showed significant colistin response with fold change of -8.47, 6.43 and 6.19, respectively.
Conclusions: In summary, colistin response in seemed to affect morphology, production of pyocyanin, and proteins of metabolism, protein synthesis, stress response and membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703588 | PMC |
http://dx.doi.org/10.18683/germs.2024.1436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!