A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative phenotypic and proteomic analysis of colistin-exposed . | LitMetric

Comparative phenotypic and proteomic analysis of colistin-exposed .

Germs

PhD, School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam, and Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.

Published: September 2024

Introduction: The emergence of colistin resistance threatens the treatment of infections.

Methods: In this study, in vitro development of colistin resistance was investigated using comparative phenotypic and proteomic analysis of ATCC 9027, its 14-day colistin sub-MIC exposed strain (Col-E1), and 10-day antibiotic-free cultured Col-E1 strain (Col-E2). Antibiotic susceptibility, morphology, virulence factors, and proteomic changes were assessed using disc-diffusion, agar-based, spectrophotometry, SEM, and iTRAQ-LC-MS/MS methods.

Results: Colistin-exposed strains decreased susceptibility to colistin while remaining susceptible to other antibiotics. Col-E1 reduced the cell lengths by 17.67% and the colony size by 36.16% compared to the initial strain. The reduction remained in Col-E2. The pyocyanin production was reduced in Col-E1 (p=0.025, Tukey HSD) and increased again in Col-E2 (p=0.005, Tukey HSD). In contrast, no significant changes in elastase, protease, rhamnolipid, pyoverdine, and biofilm production were observed (p>0.05, Tukey HSD). In Col-E1, the proteome analysis showed 135 differentially expressed proteins (DEPs) of which 94 DEPs (69.23%) maintained their expression change in Col-E2. Among DEPs, 82 were involved in metabolism and protein synthesis. Some DEPs (6/135) played a role in stress response such as GrpE (fold change: 14.93) and Hmp (fold change: 12.08). In particular, membrane proteins like OprD, DdlB, and OprI showed significant colistin response with fold change of -8.47, 6.43 and 6.19, respectively.

Conclusions: In summary, colistin response in seemed to affect morphology, production of pyocyanin, and proteins of metabolism, protein synthesis, stress response and membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703588PMC
http://dx.doi.org/10.18683/germs.2024.1436DOI Listing

Publication Analysis

Top Keywords

tukey hsd
12
fold change
12
comparative phenotypic
8
phenotypic proteomic
8
proteomic analysis
8
colistin resistance
8
metabolism protein
8
protein synthesis
8
stress response
8
colistin response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!