Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.1) to verify its anticancer immunogenicity. S4-MamA2.1 peptide has demonstrated significantly higher epitope loading and stable membrane expression of HLA-A2 antigen-presenting molecules on T2 cell lines. Further, these S4-MamA2.1 treated T2 cells were able to activate naïve CD8 T cells to induce MamA-specific cytotoxicity against breast cancer cells. Conjugation of the S4 domain has also demonstrated a slight increase in immunogenicity of lesser immunodominant MamA epitopes. The conjugation of the S4 domain to N-terminus of MamA2.1 demonstrated significantly higher immunogenicity over C-terminus conjugation. Taken together, the results of the present study suggest that conjugation of the S4 cell-penetrating peptide domain to MamA2.1 epitope enhances the peptide vaccine immunogenicity against MamA-expressing breast cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706339 | PMC |
http://dx.doi.org/10.3892/mco.2024.2815 | DOI Listing |
Hum Vaccin Immunother
December 2025
TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
The dissemination of tumor cells with ensuing metastasis is responsible for most cancer-related deaths. Cancer vaccines may, by inducing tumor-specific effector T cells, offer a strategy to eliminate metastasizing tumor cells. However, several obstacles remain in the development of effective cancer vaccines, including the identification of adjuvants that enhance the evolvement and efficacy of tumor-specific T cells.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Moderna, Inc, Cambridge, Massachusetts, USA.
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response.
View Article and Find Full Text PDFVet Immunol Immunopathol
January 2025
Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Bicutan, Taguig 1634, Philippines. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common respiratory disease-causing viral agents. Swine infected with PRRSV exhibit severe respiratory symptoms and reproductive failure, leading to significant economic losses. To address this issue, inactivated and live-attenuated vaccines have been developed.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China. Electronic address:
Emerging variants of SARS-CoV-2 pose great technological and regulatory challenges to vaccine manufacturing, especially in downstream processing. To address this dilemma, the development of broad-spectrum affinity chromatography for the purification of wild-type SARS-CoV-2 and its variants is crucial. We propose a comprehensive strategy to achieve this goal via the identification of high-affinity peptides by affinity selection of phage display and next-generation sequencing (NGS) and the evaluation of chromatographic performance.
View Article and Find Full Text PDFFront Immunol
January 2025
Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina.
VACCIMEL is a therapeutic cancer vaccine composed of four irradiated allogeneic human melanoma cell lines rationally selected to cover a wide range of melanoma tumor-associated antigens (TAA). We previously demonstrated that vaccination in the adjuvant setting prolonged the distant-metastasis-free survival of cutaneous melanoma patients and that T cells reactive to TAA and the patient's private neoantigens increased during treatment. However, immune responses directed to vaccine antigens that may arise from VACCIMEL's somatic mutations and human polymorphisms remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!