Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs). Mesalamine is modified with a functional peptide of the FRRG sequence. The resulting mesalamine prodrugs form nanoassemblies solely through intermolecular interactions, ensuring high drug loading capacity and reducing the potential toxicity associated with the carrier materials of conventional nanoparticle systems. In acetaminophen (APAP)-induced ALF mouse models, the SPNs predominantly accumulate in injured target tissues owing to the nanoparticles' propensity to target the liver. Subsequently, cathepsin B overexpressed in hepatocytes by drug-induced inflammation triggers the release of mesalamine from the nanoassemblies enzymatic cleavage, resulting in remarkable therapeutic efficacy. Meanwhile, nonspecific drug release in healthy cells is inhibited due to their relatively lower cathepsin B expression, which helps prevent the exacerbation of the ALF by minimizing adverse events related to drug exposure. This study provides valuable insights into designing rational nanomedicine for repurposing mesalamine in ALF treatment, potentially inspiring further research to discover effective and safe therapeutic options for patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700871PMC
http://dx.doi.org/10.7150/thno.101358DOI Listing

Publication Analysis

Top Keywords

drug repositioning
8
acute liver
8
liver failure
8
mesalamine
6
alf
6
drug
5
repositioning mesalamine
4
mesalamine supramolecular
4
supramolecular nanoassembly
4
treatment
4

Similar Publications

The recent spread of SARS-CoV-2 has led to serious concerns about newly emerging infectious coronaviruses. Drug repurposing is a practical method for rapid development of antiviral agents. The viral spike protein of SARS-CoV-2 binds to its major receptor ACE2 to promote membrane fusion.

View Article and Find Full Text PDF

Exploring the shared mechanism of fatigue between systemic lupus erythematosus and myalgic encephalomyelitis/chronic fatigue syndrome: monocytic dysregulation and drug repurposing.

Front Immunol

January 2025

Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.

Background: SLE and ME/CFS both present significant fatigue and share immune dysregulation. The mechanisms underlying fatigue in these disorders remain unclear, and there are no standardized treatments. This study aims to explore shared mechanisms and predict potential therapeutic drugs for fatigue in SLE and ME/CFS.

View Article and Find Full Text PDF

An update on drug repurposing in Parkinson's disease: Preclinical and clinical considerations.

Biomed Pharmacother

January 2025

Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy. Electronic address:

The strategy of drug repositioning has historically played a significant role in the identification of new treatments for Parkinson's disease. Still today, numerous clinical and preclinical studies are investigating drug classes, already marketed for the treatment of metabolic disorders, for their potential use in Parkinson's disease patients. While drug repurposing offers a promising, fast, and cost-effective path to new treatments, these drugs still require thorough preclinical evaluation to assess their efficacy, addressing the specific neurodegenerative mechanisms of the disease.

View Article and Find Full Text PDF

Drug development is known to be a costly and time-consuming process, which is prone to high failure rates. Drug repurposing allows drug discovery by reusing already approved compounds. The outcomes of past clinical trials can be used to predict novel drug-disease associations by leveraging drug- and disease-related similarities.

View Article and Find Full Text PDF

Purpose: Immunometabolism is pivotal in rheumatoid arthritis (RA) pathogenesis, yet the intricacies of its pathological regulatory mechanisms remain poorly understood. This study explores the complex immunometabolic landscape of RA to identify potential therapeutic targets.

Patients And Methods: We integrated genome-wide association study (GWAS) data involving 1,400 plasma metabolites, 731 immune cell traits, and RA outcomes from over 58,000 participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!