Direct conversion of CO with renewable H to produce methanol provides a promising way for CO utilization and H storage. Cu/ZnO catalysts are active, but their activities depend on the preparation methods. Here, we reported a facile mechanical grinding method for the fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts applied in CO hydrogenation to methanol. The confinement in ZIF-8 cages led to the formation of metal oxide particles with controlled crystallite sizes after pyrolysis in air. ZnO derived from ZIF-8 with ultrahigh specific surface area offered high CuO dispersion, obtaining higher Cu surface area and smaller Cu crystallite size after reduction. The effects of the Cu/(Cu + Zn) molar ratio and alcohol types during catalyst preparation on the textural properties of final catalysts were systemically studied. The resultant catalyst exhibited high activity with STY of methanol up to 128.7 g kg h at 200 °C, much higher than that of catalysts prepared by the conventional impregnation and coprecipitation methods and commercial Cu/ZnO. The present work offers an efficient method for optimizing Cu/ZnO catalysts for CO hydrogenation to methanol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701729PMC
http://dx.doi.org/10.1039/d4sc07418aDOI Listing

Publication Analysis

Top Keywords

cu/zno catalysts
16
hydrogenation methanol
12
fast synthesis
8
synthesis cu@zeolitic
8
cu@zeolitic imidazolate
8
imidazolate framework-8
8
framework-8 zif-8
8
zif-8 derived
8
derived cu/zno
8
facile mechanical
8

Similar Publications

Direct conversion of CO with renewable H to produce methanol provides a promising way for CO utilization and H storage. Cu/ZnO catalysts are active, but their activities depend on the preparation methods. Here, we reported a facile mechanical grinding method for the fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts applied in CO hydrogenation to methanol.

View Article and Find Full Text PDF

Dimethyl ether (DME) is a versatile molecule, gaining increasing interest as a viable hydrogen and energy storage solution, pivotal for the transitioning from fossil fuels to environmentally friendly and sustainable energy supply. This research explores a novel approach for the direct conversion of CO to DME in a fixed-bed reactor, combining the Cu/ZnO/AlO methanol synthesis catalyst with supported heteropolyacids (HPAs). First, various HPAs, both commercially available and custom-synthesized, were immobilized on Montmorillonite K10.

View Article and Find Full Text PDF

We report a new synthetic strategy for preparing well-organised, spherical and mesoporous, mixed-metal, hollow-core@layered double hydroxides. Hollow-SiO@Cu Zn Mg Al-LDHs ( + + = 2.32 ± 0.

View Article and Find Full Text PDF

Endogenous Substances Utilization for Water Self-Purification Amplification Driven by Nonexpendable HO over a Micro-Potential Difference Surface.

Environ Sci Technol

December 2024

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.

Natural self-purification of water is limited by mass transfer processes between inert oxygen (O) and stable pollutants. This process must rely on large energy inputs and resource consumption, which have become a global challenge in the environmental field. Here, we greatly amplify this self-purification effect of natural dissolved oxygen (DO) by nonexpendable HO triggering a DRC catalyst with a micro-potential difference surface.

View Article and Find Full Text PDF

Ceria-based supported metal catalysts for the low-temperature water-gas shift reaction.

Chem Commun (Camb)

December 2024

Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Water-gas shift (WGS) reaction is a crucial step for the industrial production of hydrogen or upgrading the hydrogen generated from fossil or biomass sources by removing the residual CO. However, current industrial catalysts for this process, comprising Cu/ZnO and FeO-CrO, suffer from safety or environmental issues. In the past decades, ceria-based materials have attracted wide attention as WGS catalysts due to their abundant oxygen vacancies and tunable metal-support interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!