Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct advantages and limitations. OCT offers rapid, noninvasive imaging but can suffer from clarity issues and motion artifacts, while confocal microscopy, providing high-resolution, cellular-detailed color images, is invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based on unsupervised 3D CycleGAN for translating unpaired OCT to confocal microscopy images. This marks the first attempt to exploit the inherent 3D information of OCT and translate it into the rich, detailed color domain of confocal microscopy. We also introduce a unique dataset, OCT2Confocal, comprising mouse OCT and confocal retinal images, facilitating the development of and establishing a benchmark for cross-modal image translation research. Our model has been evaluated both quantitatively and qualitatively, achieving Fréchet inception distance (FID) scores of 0.766 and Kernel Inception Distance (KID) scores as low as 0.153, and leading subjective mean opinion scores (MOS). Our model demonstrated superior image fidelity and quality with limited data over existing methods. Our approach effectively synthesizes color information from 3D confocal images, closely approximating target outcomes and suggesting enhanced potential for diagnostic and monitoring applications in ophthalmology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704141 | PMC |
http://dx.doi.org/10.1017/S2633903X24000163 | DOI Listing |
Alzheimers Dement
December 2024
L & J Bio, Co., Ltd, Seoul, Songpa-Gu, Korea, Republic of (South).
Background: Neurofibrillary tangles (NFTs), along with amyloid beta plaque, are neuropathological aggregates of Alzheimer's Disease (AD). Hyperphosphorylated tau is responsible for the NFTs formation and further neurodegeneration in AD. The hippocampal region and the entorhinal cortex (EC) have been a major focus of AD research because the deposits of hyperphosphorylated tau protein and NFT in these regions are correlated with memory deficits.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt University Medical Center, Nashville, TN, USA.
Background: We report the case of a 79-year-old woman with Alzheimer's disease who enrolled in a clinical study of lecanemab. After the third, biweekly infusion she suffered a seizure followed by aphasia and progressive encephalopathy. Magnetic resonance imaging revealed multifocal cerebral edema and an increased burden of cerebral microhemorrhages compared to pre-trial imaging.
View Article and Find Full Text PDFJ Cancer
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
Developing new drug delivery systems is crucial for enhancing the efficacy of oncolytic virus (OV) therapies in cancer treatment. In this study, mesenchymal stem cell (MSC)-derived vesicles and oncolytic viruses are exploited to construct a novel formulation. It has been hypothesized that vesicle-coated OVs could amplify cytotoxic effects through superior internalization by tumor cells.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.
View Article and Find Full Text PDFJ Transl Med
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!