Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E. aureola, E. pusilla, E. rustica, E. rutila and E. spodocephala). Comparative genomic analysis revealed distinct migration-related evolutionary adaptations in their genomes, including variations in lipid metabolism, oxidative stress response, locomotor ability and circadian regulation. These changes may facilitate the rapid occupation of emerging ecological niches and provide opportunities for species diversification. Additionally, these five species exhibited abnormal abundances of long terminal repeat retrotransposons (LTRs), comprising over 20% of their genomes, with insertion times corresponding to their divergence (~2.5 million years ago). The presence of LTRs influenced genome size, chromosomal structure and single-gene expression, suggesting their role in promoting the rapid diversification of Emberiza species. These findings offer valuable insights into the adaptive radiation of Emberiza and establish a robust theoretical foundation for further exploration of the patterns and mechanisms underlying their diversification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.14063 | DOI Listing |
Mol Ecol Resour
January 2025
School of Life Sciences, Anhui University, Hefei, Anhui, China.
Emberiza buntings (Aves: Emberizidae) exhibit extensive diversity and rapid diversification within the Old World, particularly in the eastern Palearctic, making them valuable models for studying rapid radiation among sympatric species. Despite their ecological and morphological diversity, there remains a significant gap in understanding the genomic underpinnings driving their rapid speciation. To fill this gap, we assembled high-quality chromosome-level genomes of five representative Emberiza species (E.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Landscape Ecology, University of Münster, Münster, Germany.
Migratory animals rely on multiple sites during their annual cycles. Deteriorating conditions at any site can have population-level consequences, with long-distance migrants seen as especially susceptible to such changes. Reduced adult survival caused by persecution at non-breeding sites has been suggested a major reason for the catastrophic decline of a formerly abundant, long-distance migratory songbird, the Yellow-breasted Bunting Emberiza aureola.
View Article and Find Full Text PDFAnim Cogn
December 2024
Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
Egg retrieval in birds may help ensure the survival of eggs and improve reproductive success. However, with the risk of brood parasitism, for ground-nesting or cavity-nesting bird hosts, there is a significant reproductive cost and thus a reduction in fitness if the host wrongly retrieved the parasitic eggs. The south rock bunting (Emberiza yunnanensis) and yellow-throated bunting (E.
View Article and Find Full Text PDFMol Ecol
October 2024
Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
Neuroendocrinology
November 2024
Department of Zoology, University of Lucknow, Lucknow, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!