A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Topology-Enhanced Multi-Viewed Contrastive Approach for Molecular Graph Representation Learning and Classification. | LitMetric

A Topology-Enhanced Multi-Viewed Contrastive Approach for Molecular Graph Representation Learning and Classification.

Mol Inform

Faculty of Information Technology, HUTECH University, 700000, Ho Chi Minh City, Vietnam.

Published: January 2025

In recent times, graph representation learning has been becoming a hot research topic which has attracted a lot of attention from researchers. Graph embeddings have diverse applications across fields such as information and social network analysis, bioinformatics and cheminformatics, natural language processing (NLP), and recommendation systems. Among the advanced deep learning (DL) based architectures used in graph representation learning, graph neural networks (GNNs) have emerged as the dominant and highly effective framework. The recent GNN-based methods have demonstrated state-of-the-art performance on complex supervised and unsupervised tasks at both the node and graph levels. In recent years, to enhance multi-view and structured graph representations, contrastive learning-based techniques have been developed, introducing models known as graph contrastive learning (GCL) models. These GCL approaches leverage unsupervised contrastive methods to capture multi-view graph representations by comparing node and graph embeddings, yielding significant improvements in both graph-level representations and task-specific applications, such as molecular embedding and classification. However, as most GCL techniques are primarily designed to focus on the explicit graph structure through GNN-based encoders, they often overlook critical topological insights that could be provided through topological data analysis (TDA). Given the promising research indicating that topological features can greatly benefit various graph learning tasks, we propose a novel topology-enhanced, multi-view graph contrastive learning model called TMGCL. Our TMGCL model is designed to capture and utilize both comprehensive multi-scale topological and global structural information from graphs. This enhanced representation capability positions TMGCL to directly support a range of applications, such as molecular classification, with improved accuracy and robustness. Extensive experiments within two real-world datasets proved the effectiveness and outperformance of our proposed TMGCL in comparing with state-of-the-art GNN/GCL-based baselines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.202400252DOI Listing

Publication Analysis

Top Keywords

graph
13
graph representation
12
representation learning
12
graph embeddings
8
node graph
8
graph representations
8
graph contrastive
8
contrastive learning
8
multi-view graph
8
applications molecular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!