Selective inhibition of HSF1 expression in the heat shock pathway of keloid fibroblasts reduces excessive fibrosis in keloid.

Arch Dermatol Res

Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.

Published: January 2025

The stress response following burns may be a crucial factor in keloid formation, yet the underlying pathological mechanisms remain to be elucidated. This study initially investigated how heat shock factor 1 (HSF1) and heat shock proteins (HSPs) within the heat shock pathway influence keloid fibrosis, providing insights into the role of the heat shock response in keloid development. This study aims to further elucidate the role of the heat shock pathway in keloid fibrosis and investigate the specific function of HSF1 within this pathway. This study focused on human keloid fibroblasts, examining the expression and regulatory role of HSF1 on HSPs under heat stress using immunohistochemistry, RNA interference, real-time fluorescent PCR, and Western blotting techniques. HSF1 was overexpressed in keloid fibroblasts and tissues compared to normal skin, and heat stress could further enhance HSF1 expression in both keloid tissues and fibroblasts. Functional inhibition of HSF1 significantly affected the expression of downstream HSPs in keloid fibroblasts, ultimately leading to the inhibition of keloid fibrosis. The heat shock pathway plays a crucial role in keloid fibrosis, with HSF1 as a key regulator influencing the expression of HSPs. Heat stress treatment of keloid fibroblasts offers an approach for investigating keloid formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00403-024-03747-xDOI Listing

Publication Analysis

Top Keywords

heat shock
28
keloid fibroblasts
20
shock pathway
16
keloid fibrosis
16
keloid
14
hsf1 expression
12
hsps heat
12
heat stress
12
heat
10
hsf1
8

Similar Publications

HSF1 at the crossroads of chemoresistance: from current insights to future horizons in cell death mechanisms.

Front Cell Dev Biol

January 2025

Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.

Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.

View Article and Find Full Text PDF

The prognostic value of negative regulators of ferroptosis in patients with colorectal cancer (CRC) has not yet been fully elucidated. The present study performed a systematic identification and selection of candidate negative regulators of ferroptosis using The Cancer Genome Atlas data cohort (n=367), followed by clinical validation through immunohistochemistry of samples from patients with CRC (n=166) and further evaluation. analysis identified specific light-chain subunit of the cystine/glutamate antiporter, AIFM2, NFE2L2, FTH1, GLS2, glutathione peroxidase 4 (GPX4) and heat shock protein β-1 (HSPB1) genes as possible candidates.

View Article and Find Full Text PDF

Objective: The Heat Shock Protein 70 (HSP70) family is a highly conserved group of molecular chaperones essential for maintaining cellular homeostasis. These proteins are necessary for protein folding, assembly, and degradation and involve cell recovery from stress conditions. HSP70 proteins are upregulated in response to heat shock, oxidative stress, and pathogenic infections.

View Article and Find Full Text PDF

Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.

View Article and Find Full Text PDF

Prognostic value of HSP27 in 28-day mortality in septic ICU patients: a retrospective cohort study.

Front Med (Lausanne)

January 2025

Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: This study aimed to investigate the association between serum heat shock protein 27 (HSP27) levels and 28-day mortality in patients with sepsis.

Methods: This retrospective study analyzed the clinical data of 76 septic patients admitted to the intensive care unit (ICU). Fifty non-septic ICU patients and 50 healthy individuals served as control groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!