In this study, we built on the known inhibitory potential of diaminoquinazolines (DAQs) against different stages of Plasmodium development and designed a convenient two-step synthesis to combine DAQ with primaquine (PQ) pharmacophore. The PQ-DAQ hybrids displayed potent in vitro activities in the low nanomolar range (IC 135.20-398.80 nM) against all intra-erythrocytic stages of the drug-sensitive 3D7 strain, with significant potency enhancement compared to PQ alone (IC 9370 nM). These hybrids were also potent at killing drug-resistant strains (Dd2, Dd2 R539T, IPC4912, CamWT C580Y, and 7G8) in the nanomolar range, with 11 f being the most effective compound (IC 172.20-396.60 nM). Notably, for the first time, we present evidence that the DAQ-based compound 8 and its hybrids can inhibit β-hematin formation in vitro with potency (IC 0.90-27.80 μM), suggesting hemozoin formation to be one of the potential targets of this series. Lastly, two hybrids with potent antiplasmodial activity were also found to be safe up to 10 μM against human HepG2 cells, suggesting the possibility of achieving host vs parasite selectivity with this series.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401366DOI Listing

Publication Analysis

Top Keywords

nanomolar range
8
hybrids potent
8
design synthesis
4
synthesis in vitro
4
in vitro evaluation
4
evaluation primaquine
4
primaquine diaminoquinazoline
4
diaminoquinazoline hybrid
4
hybrid molecules
4
molecules malaria
4

Similar Publications

The natural products combretastatins A-1 and A-4 are potent antimitotic and vascular-disrupting agents through their binding at the colchicine site in tubulin. However, these compounds suffer from a low water solubility and a tendency to isomerize to the inactive stilbenes. In this study, we have prepared a series of 18 -restricted triazole analogues of combretastatin A-4 (CA-4), maintaining, in all cases, the 3,4,5-trimethoxy phenyl ring A, with the aim of investigating the substitution pattern on the B-ring in a systematic way.

View Article and Find Full Text PDF

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

The drug resistance problem of needs to be solved urgently. Here, we report the rapid identification of human antibodies by high-throughput single-cell RNA and VDJ sequencing of memory B cells derived from 64 volunteers immunized with recombinant five-component vaccine (clinical phase I). From 676 antigen-binding IgG1 clonotypes, TOP10 sequences were selected for expression and characterization, with the most potent one, Abs-9, having nanomolar affinity for the pentameric form of the specific antigen protein A.

View Article and Find Full Text PDF

Bilirubin (BR) is the product of cellular heme catabolism and the main bile pigment in animal blood. It is an established biomarker for hemolysis and liver function. Over the last decade, mild hyperbilirubinemia has been shown to be a biomarker for a lower risk of cardiovascular disease, due to its antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!