Analyzing Muscle Stem Cell Function Ex Vivo.

Methods Mol Biol

Brandenburg Technische Universität Cottbus-Senftenberg, Faculty of Health Sciences, Senftenberg, Germany.

Published: January 2025

Muscle stem cells (MuSCs) lose a large proportion of their characteristics when removed from their niche, hampering the analysis of muscle stem cell functionality. However, the isolation and culture of single floating myofibers with their adjacent muscle stem cells allow the short-term culture and manipulation of muscle stem cells in conditions as close as possible to the endogenous niche. Here, the isolation, culture and transfection with siRNA of muscle stem cells on their adjacent myofibers from young as well as old mice are described.

Download full-text PDF

Source
http://dx.doi.org/10.1007/7651_2024_589DOI Listing

Publication Analysis

Top Keywords

muscle stem
24
stem cells
16
stem cell
8
isolation culture
8
stem
6
muscle
5
analyzing muscle
4
cell function
4
function vivo
4
vivo muscle
4

Similar Publications

Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.

View Article and Find Full Text PDF

Genetically Engineered Hypoimmune Human Muscle Progenitor Cells Can Reduce Immune Rejection.

Cell Prolif

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Cells face two challenges after transplantation: recognition and killing by lymphocytes, and cell apoptosis induced by the transplantation environment. Our hypoimmune cells aim to address these two challenges through editing of immunomodulatory proteins and overexpression of anti-apoptotic proteins.

View Article and Find Full Text PDF

Loss of does not affect bone and lean tissue in zebrafish.

JBMR Plus

February 2025

Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States.

Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 () as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of in zebrafish, an emerging model for bone and mineral research.

View Article and Find Full Text PDF

Analyzing Muscle Stem Cell Function Ex Vivo.

Methods Mol Biol

January 2025

Brandenburg Technische Universität Cottbus-Senftenberg, Faculty of Health Sciences, Senftenberg, Germany.

Muscle stem cells (MuSCs) lose a large proportion of their characteristics when removed from their niche, hampering the analysis of muscle stem cell functionality. However, the isolation and culture of single floating myofibers with their adjacent muscle stem cells allow the short-term culture and manipulation of muscle stem cells in conditions as close as possible to the endogenous niche. Here, the isolation, culture and transfection with siRNA of muscle stem cells on their adjacent myofibers from young as well as old mice are described.

View Article and Find Full Text PDF

Using Transcranial Magnetic Nerve Stimulation to Differentiate Motor and Sensory Fascicles in a Mixed Nerve: Experimental Rat Study.

J Reconstr Microsurg

January 2025

Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taipei, Linkou, Chang Gung University, Taoyuan, Taiwan.

Background:  Accurately matching the correct fascicles in a ruptured mixed nerve is critical for functional recovery. This study investigates the use of transcranial magnetic stimulation (TMS) to differentiate motor and sensory fascicles in a mixed nerve.

Methods:  In all 40 rats, the median nerve in the left upper arm was evenly split into three segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!