Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster.

J Appl Toxicol

Laboratorio de Genética y Toxicología Ambiental-Banco de Moscas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.

Published: January 2025

N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde. Hence, potential health and ecological risks are of concern. Due to limited information on the long-term effects of exposure to these compounds at environmentally relevant concentrations, this work aimed to compare the transgenerational reproductive and developmental toxicity of separate exposures to NDMA or its metabolite formaldehyde in Drosophila melanogaster over four generations. The parental flies were fed NDMA or formaldehyde (1.19E-06 to 5 mM) for 48 h during the third larval instar. Subsequent offspring (F1-F3) were grown under compound-free conditions. In the parental generation, both exposures modified the time to emergence and reduced the number of progenies. NDMA, but not formaldehyde, was lethal, affected fertility, and weakly induced malformations. In the next generations, both exposures induced malformed flies and modified the number of offspring. Reproductive toxicity and malformations were maintained for at least three generations, suggesting that detrimental effects could extend to unexposed offspring. This is the first study reporting the associated individual transgenerational effects on reproduction and development between NDMA and its metabolite formaldehyde in D. melanogaster, highlighting the relevance of evaluating multiple generations to accurately determine the health and environmental risks of pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.4749DOI Listing

Publication Analysis

Top Keywords

metabolite formaldehyde
12
transgenerational reproductive
8
reproductive developmental
8
developmental toxicity
8
formaldehyde drosophila
8
drosophila melanogaster
8
ndma metabolite
8
ndma formaldehyde
8
formaldehyde
7
ndma
7

Similar Publications

Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster.

J Appl Toxicol

January 2025

Laboratorio de Genética y Toxicología Ambiental-Banco de Moscas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.

N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde.

View Article and Find Full Text PDF

Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol toxicity stems from its metabolic conversion to formaldehyde and formic acid, leading to severe metabolic acidosis and multiorgan damage, including profound CNS effects and visual impairments.

View Article and Find Full Text PDF

Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.

Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.

View Article and Find Full Text PDF

Mitigating toxic formaldehyde to promote efficient utilization of C1 resources.

Crit Rev Biotechnol

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China.

The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism.

View Article and Find Full Text PDF

Protocol for unified metabolomics and proteomics analysis of formalin-fixed paraffin-embedded tissue.

STAR Protoc

December 2024

Focus Area Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, North West 2531, South Africa. Electronic address:

The use of archival formalin-fixed paraffin-embedded (FFPE) tissue samples for biochemical analyses is problematic because of the formation of a Schiff base, leading to low protein and metabolite yields during analytical extractions. Here, we overcome this issue using a unified protocol on FFPE tissue for metabolomics and proteomics analyses. Using 20 mg of wet mass tissue, this protocol consistently extracted more than 50 metabolites (across 11 classes of metabolites) and over 900 proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!