Motivation: Predicting the 3D structure of RNA is an ongoing challenge that has yet to be completely addressed despite continuous advancements. RNA 3D structures rely on distances between residues and base interactions but also backbone torsional angles. Knowing the torsional angles for each residue could help reconstruct its global folding, which is what we tackle in this work. This paper presents a novel approach for directly predicting RNA torsional angles from raw sequence data. Our method draws inspiration from the successful application of language models in various domains and adapts them to RNA.

Results: We have developed a language-based model, RNA-TorsionBERT, incorporating better sequential interactions for predicting RNA torsional and pseudo-torsional angles from the sequence only. Through extensive benchmarking, we demonstrate that our method improves the prediction of torsional angles compared to state-of-the-art methods. In addition, by using our predictive model, we have inferred a torsion angle-dependent scoring function, called TB-MCQ, that replaces the true reference angles by our model prediction. We show that it accurately evaluates the quality of near-native predicted structures, in terms of RNA backbone torsion angle values. Our work demonstrates promising results, suggesting the potential utility of language models in advancing RNA 3D structure prediction.

Availability And Implementation: Source code is freely available on the EvryRNA platform: https://evryrna.ibisc.univ-evry.fr/evryrna/RNA-TorsionBERT.

Supplementary Information: Supplementary data are available from the website.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btaf004DOI Listing

Publication Analysis

Top Keywords

torsional angles
16
language models
12
predicting rna
8
rna torsional
8
rna
7
angles
7
torsional
5
rna-torsionbert leveraging
4
leveraging language
4
models rna
4

Similar Publications

Fracture resistances of heat-treated nickel-titanium files used for minimally invasive instrumentation.

BMC Oral Health

January 2025

Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Dental and Life Science Institute, Pusan National University, Yangsan, Korea.

Background: This study compared the torsional resistance, bending stiffness, and cyclic fatigue resistances of different heat-treated NiTi files for minimally invasive instrumentation.

Methods: TruNatomy (TN) and EndoRoad (ER) file systems were compared with ProTaper Gold (PG). Torsional load, distortion angle, and bending stiffness were assessed using a custom device AEndoS, and toughness was calculated using the torsional data.

View Article and Find Full Text PDF

Objective: To investigate the effects of bone density, plate bending degree and proximal screw type on the stress fracture of clavicle hook.

Methods: Three sows weighing between 45 and 50 kg were selected, from which a total of 40 rivs were collected. The 15 ribs of sows were divided into 3 groups according to bone density and bone hardness with 5 rivs in each group.

View Article and Find Full Text PDF

Exploring the conformational space of molecules remains a challenge of fundamental importance to quantum chemistry: identification of relevant conformers at ambient conditions enables predictive simulations of almost arbitrary properties. Here, we propose a novel approach, called TTConf, to enable conformational sampling of large organic molecules where the combinatorial explosion of possible conformers prevents the use of a brute-force systematic conformer search. We employ tensor trains as a highly efficient dimensionality reduction algorithm, effectively reducing the scaling from exponential to polynomial.

View Article and Find Full Text PDF

Hydroxysilylene (HSi-OH) in the gas phase.

J Chem Phys

January 2025

Ideal Vacuum Products, LLC, 5910 Midway Park Blvd. NE, Albuquerque, New Mexico 87109, USA.

The hydroxysilylene (HSiOH) molecule has been spectroscopically identified in the gas phase for the first time. This highly reactive species was produced in a twin electric discharge jet using separate precursor streams of 16O2/18O2 and Si2H6/Si2D6, both diluted in high pressure argon. The strongest and most stable laser induced fluorescence (LIF) signals were obtained by applying an electric discharge to each of the precursor streams and then merging the discharge products just prior to expansion into vacuum.

View Article and Find Full Text PDF

Purpose: Malalignment of the lower extremity can affect one, two or all three anatomic planes. We hypothesized an influence between the malalignment of the coronal and axial planes.

Methods: A total of 356 lower extremities of 226 patients were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!