Purpose: To reveal problems of magnetic resonance imaging (MRI) for diagnosing gastric-type mucin-positive (GMPLs) and gastric-type mucin-negative (GMNLs) cervical lesions.

Methods: We selected 172 patients suspected to have lobular endocervical glandular hyperplasia; their pelvic MR images were categorised into the training (n = 132) and validation (n = 40) groups. The images of the validation group were read twice by three pairs of six readers to reveal the accuracy, area under the curve (AUC), and intraclass correlation coefficient (ICC). The readers evaluated three images (sagittal T2-weighted image [T2WI], axial T2WI, and axial T1-weighted image [T1WI]) in every patient. The pre-trained convolutional neural network (pCNN) was used to differentiate between GMPLs and GMNLs and perform four-fold cross-validation using cases in the training group. The accuracy and AUC were obtained using the MR images in the validation group. For each case, three images (sagittal T2WI and axial T2WI/T1WI) were entered into the CNN. Calculations were performed twice independently. ICC (2,1) between first- and second-time CNN was evaluated, and these results were compared with those of readers.

Results: The highest accuracy of readers was 77.50%. The highest ICC (1,1) between a pair of readers was 0.750. All ICC (2,1) values were <0.7, indicating poor agreement; the highest accuracy of CNN was 82.50%. The AUC did not differ significantly between the CNN and readers. The ICC (2,1) of CNN was 0.965.

Conclusions: Variation in the inter-reader or intra-reader accuracy in MRI diagnosis limits differentiation between GMPL and GMNL. CNN is nearly as accurate as readers but improves the reproducibility of diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684648PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315862PLOS

Publication Analysis

Top Keywords

problems magnetic
8
magnetic resonance
8
gastric-type mucin-positive
8
images validation
8
validation group
8
three images
8
images sagittal
8
t2wi axial
8
images
5
resonance diagnosis
4

Similar Publications

Background: Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase. This condition leads to muscle weakness, respiratory problems, and heart abnormalities in affected individuals.

Methods: The aim of the study is to share our experience through cross sectional study of patients with infantile-onset Pompe disease (IOPD) with different genetic variations, resulting in diverse clinical presentations.

View Article and Find Full Text PDF

Measuring the effects of motion corruption in fetal fMRI.

Hum Brain Mapp

February 2025

Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI.

View Article and Find Full Text PDF

CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.

Neuroinformatics

January 2025

Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.

Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.

View Article and Find Full Text PDF

Nanosecond pulse power has many driving advantages in the dielectric barrier discharge (DBD) application field, including better discharge effect, higher discharge efficiency, and lower electrode temperature. A high-voltage pulse voltage power supply (HV-PVPS) with a multi-turn ratio linear pulse transformer (PT) based on Marx circuit and PT topologies are suitable for most DBD plasma applications with fewer expansion modules, lower cost, smaller volume, and higher reliability comparing with the all-solid-state Marx nanosecond pulse power supply. However, during the process of DBD driven by an HV-PVPS based on Marx and PT topologies, the PT is prone to magnetic core saturation, which limits the application for DBD.

View Article and Find Full Text PDF

Ternary stochastic neuron - implemented with a single strained magnetostrictive nanomagnet.

Nanotechnology

January 2025

Department of Electrical and Computer Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA, Richmond, 23284, UNITED STATES.

Stochastic neurons are extremely efficient hardware for solving a large class of problems and usually come in two varieties - "binary" where the neuronal state varies randomly between two values of ±1 and "analog" where the neuronal state can randomly assume any value between -1 and +1. Both have their uses in neuromorphic computing and both can be implemented with low- or zero-energy-barrier nanomagnets whose random magnetization orientations in the presence of thermal noise encode the binary or analog state variables. In between these two classes is n-ary stochastic neurons, mainly ternary stochastic neurons (TSN) whose state randomly assumes one of three values (-1, 0, +1), which have proved to be efficient in pattern classification tasks such as recognizing handwritten digits from the MNIST data set or patterns from the CIFAR-10 data set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!