Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The number of patients with bone defects caused by trauma and diseases has been increasing year by year. The treatment of bone defects remains a major challenge in clinical practice. Bone scaffolds are increasingly favored for repairing bones, with triply periodic minimal surface (TPMS) scaffolds emerging as a popular option due to their superior performance. The aim of this review is to highlight the crucial influence of pore structure on the properties of TPMS bone scaffolds, offering important insights for their innovation and production. It briefly examines various elements that influence the properties of TPMS bone scaffolds, such as pore shape, porosity, pore diameter, and curvature. By analyzing these elements, this review serves as a valuable reference for upcoming research and practical implementations in the field of bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-024-06856-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!