Intracranial electrical kilohertz stimulation has recently been shown to achieve similar therapeutic benefit as conventional frequencies around 140 Hz. However, it is unknown how kilohertz stimulation influences neural activity in the mammalian brain. Using cellular calcium imaging in awake mice, we demonstrate that intracranial stimulation at 1 kHz evokes robust responses in many individual neurons, comparable to those induced by conventional 40 and 140 Hz stimulation in both the hippocampus and sensorimotor cortex. The evoked responses at the single-cell level are shaped by prominent network inhibition and critically depend on brain region. At the network level, all frequencies lead to pronounced population suppression except 1 kHz in the cortex, which evokes balanced excitatory and inhibitory population effects. Thus, kilohertz stimulation robustly modulates neural activity at both the single-neuron and population network levels through mechanisms distinct from conventional frequency stimulation, highlighting the clinical potential of intracranial kilohertz neuromodulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706954PMC
http://dx.doi.org/10.1038/s42003-024-07447-0DOI Listing

Publication Analysis

Top Keywords

kilohertz stimulation
12
evokes robust
8
conventional frequencies
8
neural activity
8
stimulation
7
kilohertz
5
kilohertz electrical
4
electrical stimulation
4
stimulation evokes
4
robust cellular
4

Similar Publications

Intracranial electrical kilohertz stimulation has recently been shown to achieve similar therapeutic benefit as conventional frequencies around 140 Hz. However, it is unknown how kilohertz stimulation influences neural activity in the mammalian brain. Using cellular calcium imaging in awake mice, we demonstrate that intracranial stimulation at 1 kHz evokes robust responses in many individual neurons, comparable to those induced by conventional 40 and 140 Hz stimulation in both the hippocampus and sensorimotor cortex.

View Article and Find Full Text PDF

Preclinical studies have evidenced a peripheral nerve blockade with kilohertz high-frequency alternating current (KHFAC) stimulation. It could have a potential effect on aberrant nerve hyperactivity, such as tremor in people with Parkinson's disease (PwPD). The objective was to investigate the effects of transcutaneous KHFAC at 10 kHz compared with sham intervention on tremor modulation, upper limb motor function, and adverse events in PwPD.

View Article and Find Full Text PDF

Medication refractory focal epilepsy creates a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, to recordings during low and high kHz frequency (HF) sham stimulation.

View Article and Find Full Text PDF

: This study is an open clinical trial that included 3 months of follow-up. : This study aimed to show the changes that occur in the viscoelastic properties of the PF measured by SEL after the six applications of a 448 kHz capacitive resistive monopolar radiofrequency (CRMR) in active, healthy subjects, immediately before the CRMR intervention (T0), during the two-week CRMR intervention program (T1), after the CRMR intervention program (T2), two weeks after the CRMR intervention program (T3), one month after the CRMR intervention program (T4), and three months after the CRMR intervention program (T5). : Our results showed that the effects of CRMR on the plantar fascia elasticity may last up to one month in a healthy population after a 3-week treatment program when compared to controls, specifically following the medial process of the calcaneal tuberosity (points 1 and 2).

View Article and Find Full Text PDF

Stability of sputtered iridium oxide neural microelectrodes under kilohertz frequency pulsed stimulation.

J Neural Eng

November 2024

Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America.

Article Synopsis
  • Kilohertz (kHz) frequency stimulation is being explored as a neuromodulation therapy for chronic pain, focusing on its effects on microelectrode materials.
  • The study evaluated sputtered iridium oxide film (SIROF) microelectrodes' electrochemical stability under pulsed electrical stimulation between 1.5-10 kHz and different charge densities.
  • Results indicated that higher frequencies increased electrode polarization, with bipolar configurations showing greater polarization than monopolar ones, while the microelectrodes maintained stable performance without major changes in electrochemical behavior even after multiple pulses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!