Objective: Fibroblast-like synoviocytes (FLS) are key players in rheumatoid arthritis (RA) by resisting apoptosis via increased autophagy. Elevated synovial aquaporin 1 (AQP1) affects RA FLS behaviors, but its relationship with FLS autophagy is unclear. We aim to clarify that silencing AQP1 inhibits autophagy to exert its anti-RA effects.

Methods: We studied the effects and mechanisms of AQP1 silencing on autophagy in TNF-α-induced RA FLS and examined the crucial role of autophagy inhibition in its impacts on RA FLS pathogenic behaviors. We explored whether silencing synovial AQP1 relieved rat adjuvant-induced arthritis (AIA) by reducing synovial autophagy.

Results: TNF-α stimulation increased AQP1 expression and autophagy levels in RA FLS, with a positive correlation between them. AQP1 silencing inhibited autophagy in TNF-α-stimulated RA FLS, along with suppressing proliferation, promoting apoptosis, and mitigating inflammation. Notably, the inhibitory effects of AQP1 silencing on RA FLS pathogenic behaviors were cancelled by autophagy activation with rapamycin (Rapa) but enhanced by autophagy inhibition using 3-Methyladenine. Mechanistically, silencing AQP1 enhanced the binding of Bcl-2 to Beclin1 by decreasing Beclin1-K63 ubiquitination, thus inhibiting RA FLS autophagy. In vivo, silencing synovial AQP1 relieved the severity and development of rat AIA, alongside reducing Ki67 expression, promoting apoptosis, and decreasing autophagy within AIA rat synovium. Expectedly, the Rapa co-administration nullified the anti-AIA effects of silencing synovial AQP1.

Conclusion: These findings reveal that silencing AQP1 inhibits RA FLS pathogenic behaviors and attenuates rat AIA through autophagy inhibition. This study may help clarify the pathogenic role of AQP1 in enhancing autophagy during RA development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-024-01966-6DOI Listing

Publication Analysis

Top Keywords

autophagy
14
silencing aqp1
12
aqp1 silencing
12
autophagy inhibition
12
fls pathogenic
12
pathogenic behaviors
12
silencing synovial
12
aqp1
11
silencing
10
fls
10

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Athira Pharma, Inc., Bothell, WA, USA.

Background: Accumulating evidence highlights impairment of autophagy as a key pathological feature of neurodegenerative diseases including Alzheimer's disease (AD). Autophagy is a highly dynamic, lysosome-based degradation process that promotes the clearance of degenerative factors to maintain cellular functions, preserve metabolic integrity, and ensure survival. Impaired autophagic function leads to the abnormal accumulation of autophagic vesicles (i.

View Article and Find Full Text PDF

Background: Traditionally associated with recreational and spiritual uses, psychedelics have gained attention in psychotherapy for their therapeutic potential. Functioning as potent 5-hydroxytryptamine (5HT) agonists, these compounds have demonstrated the ability to enhance neural plasticity by activating serotoninergic and glutamatergic systems. Despite these recognized effects, their role in treating neurodegenerative disorders, particularly dementia, remains relatively unexplored.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

L & J Bio, Co., Ltd, Seoul, Songpa-Gu, Korea, Republic of (South).

Background: Neurofibrillary tangles (NFTs), along with amyloid beta plaque, are neuropathological aggregates of Alzheimer's Disease (AD). Hyperphosphorylated tau is responsible for the NFTs formation and further neurodegeneration in AD. The hippocampal region and the entorhinal cortex (EC) have been a major focus of AD research because the deposits of hyperphosphorylated tau protein and NFT in these regions are correlated with memory deficits.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Anavex Life Sciences Corp., New York, NY, USA.

Background: There are no approved oral disease-modifying treatments for Alzheimer disease (AD). This study was intended to assess efficacy and safety of blarcamesine (ANAVEX2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) designed to exert neuroprotection through restoration of cellular homeostasis including autophagy enhancement.

Method: ANAVEX2-73-AD-004 is a multicenter (52 medical research centers/hospitals in 5 countries), randomized, double-blind, placebo-controlled, 48-week phase 2b/3 trial that enrolled 508 participants with early AD (mild cognitive impairment/mild dementia) from July 2018 to June 2021 (last patient visit in June 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!