A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hybrid Prairie Dog and Dwarf Mongoose optimization algorithm-based application placement and resource scheduling technique for fog computing environment. | LitMetric

The fog computing paradigm is better for creating delay-sensitive applications in Internet of Things (IoT). As the fog devices are resource constrained, the deployment of diversified IoT applications requires effective ways for determining available resources. Therefore, implementing an efficient resource management strategy is the optimal choice for satisfying application Quality of Service (QoS) requirements to preserve the system performance. Developing an effective resource management system with many QoS criteria is a non-deterministic polynomial time (NP) complete problem. The study applies the Hybrid Prairie Dog and Dwarf Mongoose Optimisation Algorithm-based Resource Scheduling (HPDDMOARS) Technique to effectively position IoT applications and meet fog computing QoS criteria. This HPDDMOARS technique is formulated as a weighted multi-objective IoT application placement mechanism which targets optimizing the three main parameters that considered energy, cost and makespan into account. It employed Prairie Dog Optimization Algorithm (PDOA) for exploring the possibility that helps in mapping the IoT services to the available computing services in fog computing scenario. It also derived the significance of Dwarf Mongoose Optimization Algorithm (DMOA) which helps in exploiting the local factors that helped in satisfying at least one objective of QoS index. It hybridized the benefits of PDOA and DMOA mutually for the objective of balancing the phases of exploration and exploitation such that potential mapping between the IoT tasks and the available computational resources can be achieved in the fog computing environment. The experimental validation of the proposed HPDDMOARS achieved with different number of IoT applications confirmed minimized energy consumptions of 22.18%, reduced makespan of 24.98%, and lowered cost of 18.64% than the baseline metaheuristic application deployment approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-85142-8DOI Listing

Publication Analysis

Top Keywords

fog computing
20
prairie dog
12
dwarf mongoose
12
iot applications
12
hybrid prairie
8
dog dwarf
8
mongoose optimization
8
application placement
8
resource scheduling
8
computing environment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!