Industry 4.0 represents the fourth industrial revolution, which is characterized by the incorporation of digital technologies, the Internet of Things (IoT), artificial intelligence, big data, and other advanced technologies into industrial processes. Industrial Machinery Health Management (IMHM) is a crucial element, based on the Industrial Internet of Things (IIoT), which focuses on monitoring the health and condition of industrial machinery. The academic community has focused on various aspects of IMHM, such as prognostic maintenance, condition monitoring, estimation of remaining useful life (RUL), intelligent fault diagnosis (IFD), and architectures based on edge computing. Each of these categories holds its own significance in the context of industrial processes. In this survey, we specifically examine the research on RUL prediction, edge-based architectures, and intelligent fault diagnosis, with a primary focus on the domain of intelligent fault diagnosis. The importance of IFD methods in ensuring the smooth execution of industrial processes has become increasingly evident. However, most methods are formulated under the assumption of complete, balanced, and abundant data, which often does not align with real-world engineering scenarios. The difficulties linked to these classifications of IMHM have received noteworthy attention from the research community, leading to a substantial number of published papers on the topic. While there are existing comprehensive reviews that address major challenges and limitations in this field, there is still a gap in thoroughly investigating research perspectives across RUL prediction, edge-based architectures, and complete intelligent fault diagnosis processes. To fill this gap, we undertake a comprehensive survey that reviews and discusses research achievements in this domain, specifically focusing on IFD. Initially, we classify the existing IFD methods into three distinct perspectives: the method of processing data, which aims to optimize inputs for the intelligent fault diagnosis model and mitigate limitations in the training sample set; the method of constructing the model, which involves designing the structure and features of the model to enhance its resilience to challenges; and the method of optimizing training, which focuses on refining the training process for intelligent fault diagnosis models and emphasizes the importance of ideal data in the training process. Subsequently, the survey covers techniques related to RUL prediction and edge-cloud architectures for resource-constrained environments. Finally, this survey consolidates the outlook on relevant issues in IMHM, explores potential solutions, and offers practical recommendations for further consideration.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-79151-2DOI Listing

Publication Analysis

Top Keywords

fault diagnosis
28
intelligent fault
24
industrial machinery
12
industrial processes
12
rul prediction
12
industrial
8
machinery health
8
health management
8
resource-constrained environments
8
internet things
8

Similar Publications

In the contemporary manufacturing landscape, the advent of artificial intelligence and big data analytics has been a game-changer in enhancing product quality. Despite these advancements, their application in diagnosing failure probability and risk remains underexplored. The current practice of failure risk diagnosis is impeded by the manual intervention of managers, leading to varying evaluations for identical products or similar facilities.

View Article and Find Full Text PDF

A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data.

View Article and Find Full Text PDF

Industry 4.0 represents the fourth industrial revolution, which is characterized by the incorporation of digital technologies, the Internet of Things (IoT), artificial intelligence, big data, and other advanced technologies into industrial processes. Industrial Machinery Health Management (IMHM) is a crucial element, based on the Industrial Internet of Things (IIoT), which focuses on monitoring the health and condition of industrial machinery.

View Article and Find Full Text PDF

The perception of the vehicle's environment is crucial for automated vehicles. Therefore, environmental sensors' reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle's lifetime.

View Article and Find Full Text PDF

Rolling bearings play a crucial role in industrial equipment, and their failure is highly likely to cause a series of serious consequences. Traditional deep learning-based bearing fault diagnosis algorithms rely on large amounts of training data; training and inference processes consume significant computational resources. Thus, developing a lightweight and suitable fault diagnosis algorithm for small samples is particularly crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!