We present the design of a VMI spectrometer optimized for attosecond spectroscopy in the 0-40 eV energy range. It is based on a compact three-electrode configuration where the lens shape, size, and material have been optimized using numerical simulations to improve the spectral resolution by a factor of ∼5 relative to the initial design [Eppink and Parker, Rev. Sci. Instrum. 68, 3477-3484 (1997)] while keeping a flat spectral response in the 10-40 eV range. The experimental performance is tested using an attosecond source based on high-order harmonic generation. A good agreement is observed between the measured and simulated spectral resolution. At low kinetic energy, the electrostatic lens remains the limiting factor, while the high energy range is mostly affected by the resolution of the camera objective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0240707 | DOI Listing |
Rev Sci Instrum
January 2025
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.
We present the design of a VMI spectrometer optimized for attosecond spectroscopy in the 0-40 eV energy range. It is based on a compact three-electrode configuration where the lens shape, size, and material have been optimized using numerical simulations to improve the spectral resolution by a factor of ∼5 relative to the initial design [Eppink and Parker, Rev. Sci.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
Nanophotonics
August 2024
Friedrich-Schiller University Jena, Jena, Germany.
High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material GeSbTe (GST).
View Article and Find Full Text PDFFemtosecond laser-induced plasma filaments have potential for various applications including attosecond physics, spectroscopy, and microprocessing. However, the use of plasma filaments to generate high-aspect-ratio internal modifications remains low-efficiency. Here, we experimentally demonstrated high-efficiency internal processing using plasma filaments induced by a double-pulse femtosecond laser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!