Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The phenomenon of electron transfer between cytochrome and amicyanin is a prevalent chemical process found in biological systems. In this study, we used MD simulation to explore the dynamic conformational changes and studied the possibilities of different electron transport pathways. Along with DFT computations, we employed the non-equilibrium green function for identifying electron transport channels within the system. The role of water molecules is also significant in tailoring the pathways. The research results prove that it is impossible to establish specific electron transport channels between the iron atom of cytochrome and the copper of amicyanin. Multiple paths are feasible, as the electron density of states varies with residual fluctuations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp04465g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!