Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Identifying representative sequences for groups of functionally similar proteins and enzymes poses significant computational challenges. In this study, we applied submodular optimization, a method effective in data summarization, to select representative sequences for thioesterase enzyme families. We introduced and validated two algorithms, Greedy and Bidirectional Greedy, using curated protein sequence data from the ThYme (Thioester-active enzYmes) database. Both algorithms generated sequence subsets that preserved completeness (inclusion of all known family sequences) and specificity (accurate family representation). The Greedy algorithm outperformed the Bidirectional Greedy algorithm and other methods, particularly in reducing redundancy. Our study offers an efficient approach for identifying representative protein sequences within families that have significant sequence similarity, likely to deliver results close to theoretical optima in polynomial time, with the potential to improve the selection and optimization of representative sequences in protein databases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-85165-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!