A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing CFRP damping with graphene nanoplatelets: experiments versus finite element analysis. | LitMetric

Enhancing CFRP damping with graphene nanoplatelets: experiments versus finite element analysis.

Nanotechnology

Department of Chemical Engineering , University of Patras, Panepistimioupoli, Rio, GR-26504 Patras, Patra, Periféria Dhitikís Elládh, 26504, GREECE.

Published: January 2025

This study investigates the enhancement of damping properties in carbon fiber-reinforced polymer (CFRP) composites by incorporating graphene nanoplatelets (GNPs) into the epoxy matrix. Epoxy and CFRP specimens with varying GNP concentrations, were developed and tested through free vibration experiments to measure damping ratios. Additionally, a computational model based on the finite element method (FEM) was developed to simulate the damping behavior of these hybrid nanocomposites. Using periodic representative volume elements (RVEs) under sinusoidal axial loads, the model accurately predicted damping performance by calculating the time lag between applied loads and resulting deformations. Comparison of numerical results with experimental data revealed a strong correlation, confirming the model's effectiveness in capturing the influence of GNP mass fraction on damping enhancement. .

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ada6beDOI Listing

Publication Analysis

Top Keywords

graphene nanoplatelets
8
finite element
8
damping
6
enhancing cfrp
4
cfrp damping
4
damping graphene
4
nanoplatelets experiments
4
experiments versus
4
versus finite
4
element analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!