A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quorum quenching nanoparticles against wound pathogens - A scoping review. | LitMetric

Quorum quenching nanoparticles against wound pathogens - A scoping review.

Med J Malaysia

Nanobiomedicine lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Published: January 2025

Introduction: Quorum sensing (QS) enables bacteria to coordinate colony-wide activities, including those associated with infections. Quorum quenching (QQ) inhibits QS and is a promising method for controlling bacterial infections. Several In vitro experiments have been conducted to identify nanoparticles (NPs) as potential quorum quenching inhibitors. This review examines the potential of nanoparticles for quorum quenching, focusing on the QS-regulated pathogenicity of wound pathogens.

Materials And Methods: Observational studies were conducted to explore the capacity of nanoparticles to quorum quench wound pathogens.

Results: A review of observational studies indicated that nanoparticles exhibit significant quorum-quenching capabilities against wound pathogens. Numerous nanoparticles, including silver, gold, and zinc oxide, have been demonstrated to inhibit QS-regulated activities, thereby reducing bacterial virulence and biofilm formation. These results suggest that nanoparticles could serve as potent agents for mitigating bacterial infections and enhancing wound healing.

Conclusion: Nanoparticles show considerable potential as quorum-quenching agents, effectively decreasing bacterial virulence and biofilm formation in wound pathogens. These results indicate promising applications of nanoparticles in managing bacterial infections and improving wound healing.

Download full-text PDF

Source

Publication Analysis

Top Keywords

quorum quenching
16
wound pathogens
12
bacterial infections
12
nanoparticles
9
nanoparticles quorum
8
observational studies
8
bacterial virulence
8
virulence biofilm
8
biofilm formation
8
wound
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!