A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of antidiabetic and anti-inflammatory action of selenium nanoparticles mediated through aspalathus linearis - An in vitro study. | LitMetric

Introduction: Selenium nanoparticles (SeNPs) have drawn a lot of interest among researchers because of their distinct impact on antioxidant activity, anti-inflammatory tests, antibacterial activity, and in the treatment of various diseases. A. linearis has shown great findings in biomedical applications because of its physio-chemical compounds such as Aspalathin, orientin, and isoorientin. The increasing demand for eco-friendly and sustainable nanomaterial synthesis has led to the development of green methods utilizing natural resources. The study's main objective is to synthesize green SeNPs using Aspalathus linearis and then test them for cytotoxic, anti-inflammatory, and anti-diabetic properties.

Materials And Methods: A UV-visible spectrophotometer and SEM were used to characterize the green synthesized SeNPs. The anti-inflammatory and anti-diabetic activities of green synthesized SeNPs were measured using the alphaamylase inhibitory & beta-glucosidase enzyme inhibition assay and the egg albumin, bovine serum albumin, and membrane stabilization assays. A test for the mortality of brine shrimp was used to determine the cytotoxic impact of SeNPs.

Results: A. linearis powder was used for the green synthesis of selenium nanoparticles, which exhibited the highest peak at 440 nm when analyzed using a UV-visible spectrophotometer. The In vitro anti-inflammatory effect of synthesized SeNPs was maximally inhibited by 44-83% in the bovine serum albumin assay 54-79% in the egg albumin assay, and 54-86% in the membrane stabilization assay compared with standard. The inhibition percentage of antidiabetic activity was found to be 50-86% in the alphaamylase assay and 49-85% in the beta-glucosidase assay when compared to standards at various concentrations. Furthermore, the cytotoxicity impact shows that 70% of brine shrimp were alive at the maximum fixation of 80 µg/mL.

Conclusion: The SeNPs showed concentration-dependent anti-inflammatory and anti-diabetic action, and the green synthesized SeNPs demonstrated an excellent antiinflammatory and anti-diabetic agent. The brine shrimp lethality assay confirmed the SeNPs' biocompatible nature even at high concentrations with less toxicity. Hence the study may enhance SeNPs in developing inflammation drugs and can also be utilized in diabetes management.

Download full-text PDF

Source

Publication Analysis

Top Keywords

synthesized senps
16
selenium nanoparticles
12
anti-inflammatory anti-diabetic
12
green synthesized
12
brine shrimp
12
aspalathus linearis
8
senps
8
uv-visible spectrophotometer
8
egg albumin
8
bovine serum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!