A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bias Mitigation in Primary Health Care Artificial Intelligence Models: Scoping Review. | LitMetric

Background: Artificial intelligence (AI) predictive models in primary health care have the potential to enhance population health by rapidly and accurately identifying individuals who should receive care and health services. However, these models also carry the risk of perpetuating or amplifying existing biases toward diverse groups. We identified a gap in the current understanding of strategies used to assess and mitigate bias in primary health care algorithms related to individuals' personal or protected attributes.

Objective: This study aimed to describe the attempts, strategies, and methods used to mitigate bias in AI models within primary health care, to identify the diverse groups or protected attributes considered, and to evaluate the results of these approaches on both bias reduction and AI model performance.

Methods: We conducted a scoping review following Joanna Briggs Institute (JBI) guidelines, searching Medline (Ovid), CINAHL (EBSCO), PsycINFO (Ovid), and Web of Science databases for studies published between January 1, 2017, and November 15, 2022. Pairs of reviewers independently screened titles and abstracts, applied selection criteria, and performed full-text screening. Discrepancies regarding study inclusion were resolved by consensus. Following reporting standards for AI in health care, we extracted data on study objectives, model features, targeted diverse groups, mitigation strategies used, and results. Using the mixed methods appraisal tool, we appraised the quality of the studies.

Results: After removing 585 duplicates, we screened 1018 titles and abstracts. From the remaining 189 full-text articles, we included 17 studies. The most frequently investigated protected attributes were race (or ethnicity), examined in 12 of the 17 studies, and sex (often identified as gender), typically classified as "male versus female" in 10 of the studies. We categorized bias mitigation approaches into four clusters: (1) modifying existing AI models or datasets, (2) sourcing data from electronic health records, (3) developing tools with a "human-in-the-loop" approach, and (4) identifying ethical principles for informed decision-making. Algorithmic preprocessing methods, such as relabeling and reweighing data, along with natural language processing techniques that extract data from unstructured notes, showed the greatest potential for bias mitigation. Other methods aimed at enhancing model fairness included group recalibration and the application of the equalized odds metric. However, these approaches sometimes exacerbated prediction errors across groups or led to overall model miscalibrations.

Conclusions: The results suggest that biases toward diverse groups are more easily mitigated when data are open-sourced, multiple stakeholders are engaged, and during the algorithm's preprocessing stage. Further empirical studies that include a broader range of groups, such as Indigenous peoples in Canada, are needed to validate and expand upon these findings.

Trial Registration: OSF Registry osf.io/9ngz5/; https://osf.io/9ngz5/.

International Registered Report Identifier (irrid): RR2-10.2196/46684.

Download full-text PDF

Source
http://dx.doi.org/10.2196/60269DOI Listing

Publication Analysis

Top Keywords

health care
20
primary health
16
diverse groups
16
bias mitigation
12
health
8
artificial intelligence
8
scoping review
8
models primary
8
biases diverse
8
mitigate bias
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!