A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel approach for quality control testing of medical displays using deep learning technology. | LitMetric

Novel approach for quality control testing of medical displays using deep learning technology.

Biomed Phys Eng Express

Gunma Prefectural College of Health Sciences, 323-1, Kamioki-machi, Maebashi, Gunma, Japan, Maebashi, Gunma, 371-0052, JAPAN.

Published: January 2025

In digital image diagnosis using medical displays, it is crucial to rigorously manage display devices to ensure appropriate image quality and diagnostic safety. The aim of this study was to develop a model for the efficient quality control (QC) of medical displays, specifically addressing the measurement items of contrast response and maximum luminance as part of constancy testing, and to evaluate its performance. In addition, the study focused on whether these tasks could be addressed using a multitasking strategy. Methods: The model used in this study was constructed by fine-tuning a pretrained model and expanding it to a multioutput configuration that could perform both contrast response classification and maximum luminance regression. QC images displayed on a medical display were captured using a smartphone, and these images served as the input for the model. The performance was evaluated using the area under the receiver operating characteristic curve (AUC) for the classification task. For the regression task, correlation coefficients and Bland-Altman analysis were applied. We investigated the impact of different architectures and verified the performance of multi-task models against single-task models as a baseline. Results: Overall, the classification task achieved a high AUC of approximately 0.9. The correlation coefficients for the regression tasks ranged between 0.6 and 0.7 on average. Although the model tended to underestimate the maximum luminance values, the error margin was consistently within 5% for all conditions. Conclusion: These results demonstrate the feasibility of implementing an efficient QC system for medical displays and the usefulness of a multitask-based method. Thus, this study provides valuable insights into the potential to reduce the workload associated with medical-device management the development of QC systems for medical devices, highlighting the importance of future efforts to improve their accuracy and applicability.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/ada6bdDOI Listing

Publication Analysis

Top Keywords

medical displays
16
maximum luminance
12
quality control
8
contrast response
8
classification task
8
correlation coefficients
8
medical
6
model
5
novel approach
4
approach quality
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!