Background/objective: There is limited knowledge on how diet affects the epigenome of children. Ultra-processed food (UPF) consumption is emerging as an important factor impacting health, but mechanisms need to be uncovered. We therefore aimed to assess the association between UPF consumption and DNA methylation in children.
Methods: We conducted a meta-analysis of epigenome-wide association studies (EWAS) from a total of 3152 children aged 5-11 years from four European studies (HELIX, Generation XXI, ALSPAC, and Generation R). UPF consumption was defined applying the Nova food classification system (group 4), and DNA methylation was measured in blood with Illumina Infinium Methylation arrays. Associations were estimated within each cohort using robust linear regression models, adjusting for relevant covariates, followed by a meta-analysis of the resulting EWAS estimates.
Results: Although no CpG was significant at FDR level, we found suggestive associations (p-value < 10) between UPF consumption and methylation at seven CpG sites. Three of them, cg00339913 (PHYHIP), cg03041696 (intergenic), and cg03999434 (intergenic), were negatively associated, whereas the other four, cg14665028 (NHEJ1), cg18968409 (intergenic), cg24730307 (intergenic), and cg09709951 (ATF7), were positively associated with UPF intake. These CpGs have been previously associated with health outcomes such as carcinomas, and the related genes are mainly involved in pathways related to thyroid hormones and liver function.
Conclusion: We only found suggestive changes in methylation at 7 CpGs associated with UPF intake in a large EWAS among children: although this shows a potential impact of UPF intake on DNAm, this might not be a key mechanism underlying the health effects of UPFs in children. There is a need for more detailed dietary assessment in children studies and of intervention studies to assess potential epigenetic changes linked to a reduction in UPF in the diet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706074 | PMC |
http://dx.doi.org/10.1186/s13148-024-01782-z | DOI Listing |
Hemasphere
January 2025
Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104 Assistance Publique-Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital Cochin Paris France.
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.
View Article and Find Full Text PDFWorld J Oncol
February 2025
Department of Pathology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China.
Background: The correlation between methylation of paired box gene 1 () and sex determining region Y-box 1 () with human papillomavirus (HPV) infection and the progression of cervical lesions is not well understood. This study aims to explore the potential value of and as diagnostic biomarkers for cervical diseases.
Methods: A total of 139 cervical biopsy tissue samples were obtained from the Department of Pathology, the Seventh Medical Center, Chinese PLA General Hospital from 2021 to 2023.
Genes Genomics
January 2025
Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
Background: The clinical course of high-risk neuroblastoma patients remains suboptimal, and the dynamic and reversible nature of cellular senescence provides an opportunity to develop new therapies.
Objective: This study aims to identify unique markers of cellular senescence in neuroblastoma and to explore their clinical significance.
Methods: The impact of multiple genetic regulatory mechanisms on cellular senescence-associated genes (CSAGs) was first assessed.
AJNR Am J Neuroradiol
January 2025
From the Department of Neuroradiology (G.B., N.H., F.D.v.D., A.B., Z.K.), University Hospital Zürich, Zürich, Switzerland.
Background And Purpose: Whether differences in the O-methylguanine-DNA methyltransferase () promoter methylation status of glioblastoma (GBM) are reflected in MRI markers remains largely unknown. In this work, we analyze the ADC in the perienhancing infiltration zone of GBM according to the corresponding status by using a novel distance-resolved 3D evaluation.
Materials And Methods: One hundred one patients with wild-type GBM were retrospectively analyzed.
J Immunother Cancer
January 2025
Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UNISTRA, Illkirch-Graffenstaden, France
Background: Endogenous retrovirus (ERV) elements are genomic footprints of ancestral retroviral infections within the human genome. While the dysregulation of ERV transcription has been linked to immune cell infiltration in various cancers, its relationship with immune checkpoint inhibitor (ICI) response in solid tumors, particularly metastatic clear-cell renal cell carcinoma (ccRCC), remains inadequately explored.
Methods: This study analyzed patients with metastatic ccRCC from two prospective clinical trials, encompassing 181 patients receiving nivolumab in the CheckMate trials (-009 to -010 and -025) and 48 patients treated with the ipilimumab-nivolumab combination in the BIONIKK trial.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!