Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections. In this study, we constructed an engineered S. Typhimurium to rapidly produce the outer membrane vesicle (OMV) with low endotoxic activity to deliver the O-antigen of E. coli. S. Typhimurium OMV (STmOMV), which displays mixed heterologous O-antigens, was systematically investigated in mice for immunogenicity and the ability to prevent wild-type STEC infection. Animal experiments demonstrated that STmOMV displaying both E. coli O111 and O157 O-antigens by intraperitoneal injection not only induced robust humoral immunity but also provided effective protection against wild-type E. coli O111 and O157 infection in mice, as well as long-lasting immunity. Meanwhile, the O-antigen polysaccharides of E. coli O26 and O45, and O145 and O103 were also mixedly exhibited on STmOMV as O-antigens of the O111 and O157 did. Three mixed STmOMVs were inoculated intraperitoneally to mice, and confer effective protection against six E. coli infections. The STmOMV developed in this study to display mixed heterologous O-antigens provides an innovative and improved strategy for the prevention of multiple STEC infections.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12934-024-02640-6DOI Listing

Publication Analysis

Top Keywords

stec infections
16
mixed heterologous
12
heterologous o-antigens
12
o111 o157
12
o26 o45
8
multiple stec
8
coli o111
8
effective protection
8
coli
7
stec
6

Similar Publications

Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.

View Article and Find Full Text PDF

CRISPR/Cas Systems as Diagnostic and Potential Therapeutic Tools for Enterohemorrhagic .

Arch Immunol Ther Exp (Warsz)

January 2025

Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA.

Following its discovery as an adaptive immune system in prokaryotes, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been developed into a multifaceted genome editing tool. This review compiles findings aimed at implementation of this technology for selective elimination or attenuation of enterohemorrhagic (EHEC). EHEC are important zoonotic foodborne pathogens that cause hemorrhagic colitis and can progress to the life-threatening hemolytic uremic syndrome (HUS).

View Article and Find Full Text PDF

Enteropathogenic (EPEC), necrotoxigenic (NTEC), and Shiga-toxin producing (STEC) are pathotypes responsible for severe clinical forms in humans and animals. They can be shed in the feces of animals with consequent environmental contamination. This study evaluated the antibacterial activity of essential oils (EOs) from oregano (, savory , thyme (, and their blend against EPEC, NTEC, and STEC strains previously isolated from avian fecal samples.

View Article and Find Full Text PDF

Escherichia coli in diarrhoeic lambs: Prevalence, virulence and antibiotic resistance.

Pol J Vet Sci

September 2024

Department of Veterinary Microbiology, College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur, Rajasthan University of Veterinary and Animal Sciences (RAJUVAS), Rajasthan, India.

The present study aimed to detect the prevalence, virulence and antimicrobial resistance genes profile of Escherichia coli isolated from diarrhoeic lambs. A total of 61 faecal samples were collected from diarrhoeic lambs. The presence of various virulence and antimicrobial resistance genes in E.

View Article and Find Full Text PDF

Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!