Uncovering the epigenetic regulatory clues of PRRT1 in Alzheimer's disease: a strategy integrating multi-omics analysis with explainable machine learning.

Alzheimers Res Ther

Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, China.

Published: January 2025

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder with a largely unexplored epigenetic landscape.

Objective: This study employs an innovative approach that integrates multi-omics analysis and explainable machine learning to explore the epigenetic regulatory mechanisms underlying the epigenetic signature of PRRT1 implicated in AD.

Methods: Through comprehensive DNA methylation and transcriptomic profiling, we identified distinct epigenetic signatures associated with gene PRRT1 expression in AD patient samples compared to healthy controls. Utilizing interpretable machine learning models and ELMAR analysis, we dissected the complex relationships between these epigenetic signatures and gene expression patterns, revealing novel regulatory elements and pathways. Finally, the epigenetic mechanisms of these genes were investigated experimentally.

Results: This study identified ten epigenetic signatures, constructed an interpretable AD diagnostic model, and utilized various bioinformatics methods to create an epigenomic map. Subsequently, the ELMAR R package was used to integrate multi-omics data and identify the upstream transcription factor MAZ for PRRT1. Finally, experiments confirmed the interaction between MAZ and PRRT1, which mediated apoptosis and autophagy in AD.

Conclusion: This study adopts a strategy that integrates bioinformatics analysis with molecular experiments, providing new insights into the epigenetic regulatory mechanisms of PRRT1 in AD and demonstrating the importance of explainable machine learning in elucidating complex disease mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706112PMC
http://dx.doi.org/10.1186/s13195-024-01646-xDOI Listing

Publication Analysis

Top Keywords

machine learning
16
epigenetic regulatory
12
explainable machine
12
epigenetic signatures
12
alzheimer's disease
8
multi-omics analysis
8
analysis explainable
8
epigenetic
8
regulatory mechanisms
8
maz prrt1
8

Similar Publications

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Accurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.

View Article and Find Full Text PDF

Background: Learning health systems (LHS) have the potential to use health data in real time through rapid and continuous cycles of data interrogation, implementing insights to practice, feedback, and practice change. However, there is a lack of an appropriately skilled interprofessional informatics workforce that can leverage knowledge to design innovative solutions. Therefore, there is a need to develop tailored professional development training in digital health, to foster skilled interprofessional learning communities in the health care workforce in Australia.

View Article and Find Full Text PDF

Detecting anomalies in smart wearables for hypertension: a deep learning mechanism.

Front Public Health

January 2025

Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.

Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).

View Article and Find Full Text PDF

Background: Large language models (LLMs) have demonstrated impressive performance on medical licensing and diagnosis-related exams. However, comparative evaluations to optimize LLM performance and ability in the domain of comprehensive medication management (CMM) are lacking. The purpose of this evaluation was to test various LLMs performance optimization strategies and performance on critical care pharmacotherapy questions used in the assessment of Doctor of Pharmacy students.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!