The SARS-CoV-2 main protease (M or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 M. TRMT1 installs the ,-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that M can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an M-TRMT1 peptide complex that shows how TRMT1 engages the M active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of M-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 M that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7554/eLife.91168 | DOI Listing |
Elife
January 2025
Department of Chemistry & Biochemistry, University of Delaware, Newark, United States.
The SARS-CoV-2 main protease (M or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 M. TRMT1 installs the ,-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis.
View Article and Find Full Text PDFPlant Sci
December 2024
College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China. Electronic address:
2-methylguanosine is an eukaryote-specific modified nucleoside in transfer RNAs, and mG10 is catalyzed by Trm11-Trm112 protein complex in eukaryotic tRNAs. Here, we show that loss-of-function mutation of the Arabidopsis Trm11 homolog AtTRM11 resulted in mG deficiency associated with disturbed ribosome assembly and overall transcriptome changes, including genes involved in flowering regulation and plant-pathogen interaction. The attrm11 mutant showed phenotypes of enlarged rosette leaves and early flowering, as well as enhanced resistance to Pseudomonas bacterial infection.
View Article and Find Full Text PDFCell Death Dis
December 2024
School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
Fine particulate matter (PM2.5) exposure has been associated with increased incidence and mortality of lung cancer. However, the molecular mechanisms underlying PM2.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Enzyme-mediated modifications of tRNA, such as 5-methylcytosine (m5C) installed by nuclear-enriched NOP2/Sun RNA methyltransferase 2 (NSUN2), play a critical role in neuronal development and function. However, our understanding of these modifications' spatial installation and biological functions remains incomplete. In this study, we demonstrate that a nucleoplasm-localized G679R NSUN2 mutant, linked to intellectual disability, diminishes NSUN2-mediated tRNA m5C in human cell lines and Drosophila.
View Article and Find Full Text PDFRedox Rep
December 2024
Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt.
Gasotransmitters play crucial roles in regulating many physiological processes, including cell signaling, cellular proliferation, angiogenesis, mitochondrial function, antioxidant production, nervous system functions and immune responses. Hydrogen sulfide (HS) is the most recently identified gasotransmitter, which is characterized by its biphasic behavior. At low concentrations, HS promotes cellular bioenergetics, whereas at high concentrations, it can exert cytotoxic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!