Background: Biomass allocation reflects functional tradeoffs among plant organs and thus represents life history strategies. However, little is known about the patterns and drivers of biomass allocation between reproductive and vegetative organs along large environmental gradients. Here, we examined how environmental gradients affect biomass and the allocation between reproductive and vegetative organs. We also tested whether the allocation patterns conform optimal or allometric partitioning theory.
Methods: We collected 22 Artemisia species along a large environmental gradient in China and measured reproductive (infructescences including seeds) and vegetative (leaves, stems and roots) mass for each plant. We then used standardized major axes regressions to quantify the relationships between reproductive and vegetative organs and linear mixed-effect models to examine the effect of environmental gradients (climate and soil) on biomass allocation patterns.
Results: We found significant negative correlations between total biomass of Artemisia and the first principal component of climate, an axis that was negatively correlated with temperature and precipitation. Overall, there were significant isometric relationships between reproductive and vegetative mass. In addition, the ratio of reproductive to vegetative mass increased with the second principal component of climate (representing climate variability), but decreased with the second principal component of soil (representing bulk density and available water capacity). These patterns were consistent at the individual and interspecific levels, but were mixed at the intraspecific level.
Conclusions: Our findings of the plastic responses of biomass allocation to environmental gradients support the optimal partitioning theory (OPT). The isometric relationships between reproductive and vegetative organs indicate that plant growth and reproduction are intricately linked. Furthermore, the plasticity of biomass ratios of reproductive to vegetative organs to climate variability and soil physical properties suggests that the flexible allocation between growth and reproduction is crucial for successful adaptation to diverse habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707923 | PMC |
http://dx.doi.org/10.1186/s12870-024-06030-3 | DOI Listing |
AoB Plants
January 2025
INRAE, URP3F, 86600 Lusignan, France.
Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.
View Article and Find Full Text PDFNew Phytol
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
In plants, sperm cell formation involves two rounds of pollen mitoses, in which the microspore initiates the first pollen mitosis (PMI) to produce a vegetative cell and a generative cell, then the generative cell continues the second mitosis (PMII) to produce two sperm cells. DUO1, a R2R3 Myb transcription factor, is activated in the generative cell to promote S-G2/M transition during PMII. Loss-of-function of DUO1 caused a complete arrest of PMII.
View Article and Find Full Text PDFProtoplasma
January 2025
Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov Street, 2, 197376, St. Petersburg, Russia.
Previously, it was found that four types of glandular trichomes (GTs) are developed on the surface of all aerial organs in Doronicum species. A detailed study of leaves had shown that only two types of GTs form in them. Nothing was known about any differences of GTs on vegetative and reproductive organs.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China. Electronic address:
The SUPERMAN (SUP) proteins, which belong to the single C2H2 zinc finger proteins (ZFP) subclass, participate in various aspects of gene regulation in plant morphogenesis and stress response, but their role in melon (Cucumis melo) is still largely unknown. We identified a total of 28 CmSUP genes in the melon genome, all containing QALGGH conserved domain. Collinearity analysis showed that melon had several homologous gene pairs with Arabidopsis and tomato, indicating the gene duplication events during the evolution.
View Article and Find Full Text PDFAnn Bot
January 2025
Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany.
Background And Aims: Kalanchoe is a diverse genus in the Crassulaceae, with centres of diversity in Madagascar and sub-Saharan Africa. The genus is known for its popularity in horticulture, its use as a model system for research on CAM photosynthesis and vegetative reproduction, its high invasive potential, and its use in traditional medicine. The genus-rank circumscription and infrageneric classification of Kalanchoe have been the subject of debate for centuries, especially regarding the status and rank of what is now treated as K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!