A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CLAIRE: a contrastive learning-based predictor for EC number of chemical reactions. | LitMetric

CLAIRE: a contrastive learning-based predictor for EC number of chemical reactions.

J Cheminform

Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Published: January 2025

Predicting EC numbers for chemical reactions enables efficient enzymatic annotations for computer-aided synthesis planning. However, conventional machine learning approaches encounter challenges due to data scarcity and class imbalance. Here, we introduce CLAIRE (Contrastive Learning-based AnnotatIon for Reaction's EC), a novel framework leveraging contrastive learning, pre-trained language model-based reaction embeddings, and data augmentation to address these limitations. CLAIRE achieved notable performance improvements, demonstrating weighted average F1 scores of 0.861 and 0.911 on the testing set (n = 18,816) and an independent dataset (n = 1040) derived from yeast's metabolic model, respectively. Remarkably, CLAIRE significantly outperformed the state-of-the-art model by 3.65 folds and 1.18 folds, respectively. Its high accuracy positions CLAIRE as a promising tool for retrosynthesis planning, drug fate prediction, and synthetic biology applications. CLAIRE is freely available on GitHub ( https://github.com/zishuozeng/CLAIRE ).Scientific contributionThis work employed contrastive learning for predicting enzymatic reaction's EC numbers, overcoming the challenges in data scarcity and imbalance. The new model achieves the state-of-the-art performance and may facilitate the computer-aided synthesis planning.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13321-024-00944-8DOI Listing

Publication Analysis

Top Keywords

claire contrastive
8
contrastive learning-based
8
chemical reactions
8
computer-aided synthesis
8
synthesis planning
8
challenges data
8
data scarcity
8
contrastive learning
8
claire
6
learning-based predictor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!