A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Whole tissue proteomic analyses of cardiac ATTR and AL unveil mechanisms of tissue damage. | LitMetric

Background: Cardiac AL and ATTR are potentially fatal cardiomyopathies. Current therapies do not address mechanisms of tissue dysfunction because these remain unknown. Our prior work focused on the amyloid plaque proteome, which may not capture tissue-wide proteomic alterations.

Objectives: To evaluate mechanisms of tissue dysfunction in cardiac AL and ATTR using a full biopsy tissue proteomics approach.

Methods: We performed proteomics analysis on 76 ATTR and 27 AL diagnostic endomyocardial biopsies.

Results: Stage-3 AL patients exhibited increased coagulation, extracellular matrix remodelling (ECM), epithelial-to-mesenchymal transition (EMT), complement activation, hypoxia, and clathrin-mediated endocytosis pathways stages-1/2, with decreased healthy cardiac metabolism. In stages-2 and 3 ATTR, immunoglobulin proteins, complement, and keratinisation pathways were increased compared to stage-1. Unsupervised analyses identified an ATTR group with worse survival characterised by upregulated complement and downregulated metabolic pathways. Compared to ATTR, AL had higher clathrin-mediated endocytosis, mRNA splicing, and ribosomal proteins, while ATTR had higher complement levels.

Conclusions: This study identifies known processes dysregulated in heart failure with preserved ejection fraction as well as novel pathways responsible for tissue damage. Our results support an immune-mediated mechanism of tissue toxicity in cardiac amyloidosis, especially among patients with worse outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13506129.2024.2448440DOI Listing

Publication Analysis

Top Keywords

cardiac attr
12
mechanisms tissue
12
attr
8
tissue damage
8
tissue dysfunction
8
clathrin-mediated endocytosis
8
attr higher
8
tissue
7
cardiac
5
tissue proteomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!