Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Monitoring fibrosis in patients with chronic liver disease (CLD) is an important management strategy. We have already reported a novel stacked microvascular imaging (SMVI) technique and an examiner scoring evaluation method to improve fibrosis assessment accuracy and demonstrate its high sensitivity. In the present study, we analyzed the effectiveness and objectivity of SMVI in diagnosing the liver fibrosis stage based on artificial intelligence (AI).
Methods: This single-center, cross-sectional study included 517 patients with CLD who underwent ultrasonography and liver stiffness testing between August 2019 and October 2022. A convolutional neural network model was constructed to evaluate the degree of liver fibrosis from stacked microvascular images generated by accumulating high-sensitivity Doppler (i.e., high-definition color) images from these patients. In contrast, as a method of judgment by the human eye, we focused on three hallmarks of intrahepatic microvessel morphological changes in the stacked microvascular images: narrowing, caliber irregularity, and tortuosity. The degree of liver fibrosis was classified into five stages according to etiology based on liver stiffness measurement: F0-1Low (< 5.0 kPa), F0-1High (≥ 5.0 kPa), F2, F3, and F4.
Results: The AI classification accuracy was 53.8% for a 5-class classification, 66.3% for a 3-class classification (F0-1Low vs. F0-1High vs. F2-4), and 83.8% for a 2-class classification (F0-1 vs. F2-4). The diagnostic accuracy for ≥ F2 was 81.6% in the examiner's score assessment, compared with 83.8% in AI assessment, indicating that AI achieved higher diagnostic accuracy. Similarly, AI demonstrated higher sensitivity and specificity of 84.2% and 83.5%, respectively. Comparing human judgement with AI judgement, the AI analysis was a superior model with a higher F1 score in the 2-class classification.
Conclusions: In detecting significant fibrosis (≥ F2) using the SMVI method, AI-based assessments are more accurate than human judgement; moreover, AI-based SMVI analysis eliminating human subjectivity bias and determining patients with objective fibrosis development is considered an important improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12880-024-01531-x | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706143 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!