Tracing the paths of modular evolution by quantifying rearrangement events of protein domains.

BMC Ecol Evol

Institute for Evolution and Biodiversity, University of Münster, Münster, 48159, Germany.

Published: January 2025

Background: Protein evolution is central to molecular adaptation and largely characterized by modular rearrangements of domains, the evolutionary and structural building blocks of proteins. Genetic events underlying protein rearrangements are relatively rare compared to changes of amino-acids. Therefore, these events can be used to characterize and reconstruct major events of molecular adaptation by comparing large data sets of proteomes.

Results: Here we determine, at unprecedented completeness, the rates of fusion, fission, emergence and loss of domains in five eukaryotic clades (monocots, eudicots, fungi, insects, vertebrates). By characterizing rearrangements that were previously considered "ambiguous" or "complex" we raise the fraction of resolved rearrangement events from previously ca. 60% to around 92%. We exemplify our method by analyzing the evolutionary histories of protein rearrangements in (i) the extracellular matrix, (ii) innate immunity across Eukaryota, Metazoa, and Vertebrata, and (iii) Toll-Like-Receptors in the innate immune system of Eukaryota. In all three cases we can find hot-spots of rearrangement events in their phylogeny which (i) can be related with major events of adaptation and (ii) which follow the emergence of new domains which become integrated into existing arrangements.

Conclusion: Our results demonstrate that, akin to the change at the level of amino acids, domain rearrangements follow a clock-like dynamic which can be well quantified and supports the concept of evolutionary tinkering. While many novel domain emergence events are ancient, emerged domains are quickly incorporated into a great number of proteins. In parallel, the observed rates of emergence of new domains are becoming smaller over time.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12862-024-02347-7DOI Listing

Publication Analysis

Top Keywords

rearrangement events
12
events
8
molecular adaptation
8
protein rearrangements
8
major events
8
emergence domains
8
domains
6
rearrangements
5
tracing paths
4
paths modular
4

Similar Publications

Background: Protein evolution is central to molecular adaptation and largely characterized by modular rearrangements of domains, the evolutionary and structural building blocks of proteins. Genetic events underlying protein rearrangements are relatively rare compared to changes of amino-acids. Therefore, these events can be used to characterize and reconstruct major events of molecular adaptation by comparing large data sets of proteomes.

View Article and Find Full Text PDF

Within Polynoidae, a diverse aphroditiform family, the subfamily Macellicephalinae comprises anchialine cave-dwelling and deep-sea scaleworms. In this study, Lepidonotopodinae is synonymized with Macellicephalinae, and the tribe Lepidonotopodini is applied to a well-supported clade inhabiting deep-sea chemosynthetic-based ecosystems. Newly sequenced "genome skimming" data for 30 deep-sea polynoids and the comparatively shallow living is used to bioinformatically assemble their mitogenomes.

View Article and Find Full Text PDF

Groups of orthologous genes are commonly found together on the same chromosome over vast evolutionary distances. This extensive physical gene linkage, known as macrosynteny, is seen between bilaterian phyla as divergent as Chordata, Echinodermata, Mollusca, and Nemertea. Here, we report a unique pattern of genome evolution in Bryozoa, an understudied phylum of colonial invertebrates.

View Article and Find Full Text PDF

Purpose: Datopotamab deruxtecan (Dato-DXd) is a trophoblast cell-surface antigen-2-directed antibody-drug conjugate with a highly potent topoisomerase I inhibitor payload. The TROPION-Lung05 phase II trial (ClinicalTrials.gov identifier: NCT04484142) evaluated the safety and clinical activity of Dato-DXd in patients with advanced/metastatic non-small cell lung cancer (NSCLC) with actionable genomic alterations progressing on or after targeted therapy and platinum-based chemotherapy.

View Article and Find Full Text PDF

Telomerase is reactivated by genomic TERT rearrangements in ~30% of diagnosed high-risk neuroblastomas. Dismal patient prognosis results if the RAS/MAPK/ALK signaling transduction network also harbors mutations. We present a liquid biopsy-based monitoring strategy for this particularly vulnerable pediatric patient subgroup, for whom real-time molecular diagnostic tools are limited to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!