The Role of Glial Cells in Autism Spectrum Disorder: Molecular Mechanisms and Therapeutic Approaches.

CNS Neurol Disord Drug Targets

Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP)-244001, India.

Published: January 2025

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social communication deficits and repetitive behaviors. Emerging evidence highlights the significant role of glial cells, particularly astrocytes and microglia, in the pathophysiology of ASD. Glial cells are crucial for maintaining homeostasis, modulating synaptic function, and responding to neural injury. Dysregulation of glial cell functions, including altered cytokine production, impaired synaptic pruning, and disrupted neuroinflammatory responses, has been implicated in ASD. Molecular mechanisms underlying these disruptions involve aberrant signaling pathways, such as the mTOR pathway, and epigenetic modifications, leading to altered gene expression profiles in glial cells. Moreover, microglial activation and reactive astrocytosis contribute to an inflammatory environment that exacerbates neural circuit abnormalities. Understanding these molecular mechanisms opens avenues for therapeutic interventions. Current therapeutic approaches targeting glial cell dysfunction include anti-inflammatory agents, modulators of synaptic function, and cell-based therapies. Minocycline and ibudilast have shown potential for modulating microglial activity and reducing neuroinflammation. Additionally, advancements in gene editing and stem cell therapy hold promise for restoring normal glial function. This abstract underscores the importance of glial cells in ASD. It highlights the need for further research to elucidate the complex interactions between glial dysfunction and ASD pathogenesis, aiming to develop targeted therapies that can ameliorate the clinical manifestations of ASD.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715273337007241115102118DOI Listing

Publication Analysis

Top Keywords

glial cells
20
molecular mechanisms
12
role glial
8
autism spectrum
8
spectrum disorder
8
therapeutic approaches
8
glial
8
synaptic function
8
glial cell
8
asd
6

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.

Background: Alzheimer's disease (AD) is a neurodegenerative disorder primarily associated with aging, but manifests as a complex interplay of multiple factors. Decline in sex-hormones, particularly 17-beta estradiol, is linked to the aging process. The risk for onset of AD significantly increases with aging and loss of estradiol.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Novo Nordisk A/S, Søborg, Denmark.

Background: Evidence suggests glucagon-like peptide 1 receptor agonists (GLP-1RAs) may have therapeutic potential in Alzheimer's disease (AD). Cumulative evidence has indicated a potential reduction in cognitive decline in people with AD, while real-world evidence has shown decreased dementia risk in patients with type 2 diabetes. Non-clinical data reveal that GLP-1RAs impact neuroinflammation and other biological processes believed to be involved in AD pathophysiology, including effects on central and peripheral immune cells.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Westport, CT, USA.

Background: A 73-year-old female with a 3 year history of Alzheimer's disease was treated within the protocol of The Alzheimer's Autism and Cognitive Impairment Stem Cell Treatment Study (ACIST), an IRB approved clinical study registered with clinicaltrials.gov NCT03724136.

Method: The procedure consists of bone marrow aspiration, cell separation using an FDA cleared class 2 device, and intravenous and intranasal administration of the stem cell fraction.

View Article and Find Full Text PDF

This study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!