A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feeding- and Light-Cycle Synergistically Regulate Mouse Blood Pressure Daily Rhythm via -Dependent and Independent Mechanisms. | LitMetric

Cardiovascular health requires the orchestration of the daily rhythm of blood pressure (BP), which responds to changes in light exposure and dietary patterns. Whether rhythmic light and feeding can modulate daily BP rhythm directly or via modulating intrinsic core clock gene is unknown. Using inducible global knockout mice (iBmal1KO), we explored the impact of rhythmic light, rhythmic feeding, or their combination on various physiological parameters. Daily rhythms of BP, heart rate, and locomotor activity were monitored via radiotelemetry, while food intake patterns were tracked using the BioDAQ system. Respiratory exchange ratio (RER) and energy expenditure (EE) were assessed through indirect calorimetry. In addition, spectrum analysis was employed to analyze spontaneous baroreflex sensitivity and heart rate variability, and urinary norepinephrine excretion was quantified using high-performance liquid chromatography (HPLC). Neither rhythmic feeding nor rhythmic light alone was sufficient to reinstate the daily BP rhythm in arrhythmic iBmal1KO mice. However, combining the light and feeding cues in synchrony partially restored the daily BP rhythm. Interestingly, rhythmic feeding alone robustly reinstated RER and EE rhythms, even without rhythmic light. Similar to BP, the partial reinstatement of the daily rhythms in heart rate and locomotor activity was observed only when rhythmic light and feeding were applied in tandem. Rhythmic light by itself did not restore the light-dark phase difference in baroreflex sensitivity, urinary norepinephrine excretion, or the daily rhythm of heart rate variability. However, rhythmic feeding, alone or in combination with rhythmic light, successfully reinstated the light-dark phase differences in these parameters. In the absence of , the synergy between rhythmic light and feeding can partially restore daily BP rhythm.

Download full-text PDF

Source
http://dx.doi.org/10.1177/07487304241302510DOI Listing

Publication Analysis

Top Keywords

rhythmic light
32
daily rhythm
28
light feeding
16
rhythmic feeding
16
heart rate
16
rhythmic
12
light
10
daily
9
blood pressure
8
feeding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!