Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g. Electron microscopy and nitrogen desorption studies verified the successful synthesis of the 12 ordered MBG formulations. Assessment of hydroxyapatite conversion kinetics via FTIR spectroscopy and SEM demonstrated accelerated deposition for 70-80% SiO formulations, independent of the surfactant used. However, the templating agent had an impact on drug loading as observed in this study where MBG synthesized by the templating agent Pluronic P123 had higher drug loading compared to the other surfactants. To determine the drug release mechanisms, the in vitro kinetic profiles were fitted to various mathematical models including ze-ro. Most compositions exhibited release properties closest to zero-order, indicating a concentration-independent drug elution rate. These results in this study explain the relationship between tailored hierarchical architecture and intrinsic ion release rates to enable advanced functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/08853282241312040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!