One-Dimensional Excitonic Insulator of MTe (M = Mo, W) Atomic Wires.

Nano Lett

Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.

Published: January 2025

Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory. The many-body GW and Bethe-Salpeter equation scheme shows giant exciton binding energies up to 1.6 eV for these narrow-gap semiconductors, much exceeding their single-particle band gaps and implying a robust thermal-equilibrium exciton Bose-Einstein condensation with high critical temperatures. The excitonic instability of these single atomic wires is attributed to their small dielectric constant, same parity and ultraflat dispersion for the band edge states. Our work shed light in exploiting the strong excitonic effects in 1D vdW materials to realize macroscopic quantum phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c05448DOI Listing

Publication Analysis

Top Keywords

atomic wires
12
excitonic insulator
8
excitonic instability
8
instability single
8
single atomic
8
vdw materials
8
one-dimensional excitonic
4
insulator mte
4
mte atomic
4
wires coulomb
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!