CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops). We previously determined that damage by the cytosine deaminase, Fcy1, was required for both fragility and instability of CAG/CTG tracts engaged in R-loops. To determine whether this mechanism is more universal, we expressed human cytidine deaminases APOBEC3A (A3A), APOBEC3B (A3B), or activation-induced cytidine deaminase (AID) in our yeast system. We show that mutagenic activity of Apolipoprotein B messenger RNA-editing enzyme, catalytic polypeptides causes CAG/CTG fragility and instability, with A3A having the greatest effect followed by A3B and least from AID. A3A-induced repeat fragility was exacerbated by enrichment of R-loops at the repeat site. A3A and A3B-induced instability was dependent on the MutLγ nuclease and to a lesser extent, base excision repair factors. Deaminase activity assays on hairpin substrates containing CTG and GTC triplet sequences revealed that A3A prefers cytidines within the hairpin loop, and bulges in the hairpin stem alter preferred locations. Analysis of RNA expression levels in human cortex samples revealed that A3A is expressed in brain tissue that exhibits CAG/CTG repeat expansions and its expression is elevated in Huntington's disease (HD) patient samples. These results implicate cytidine deamination by A3A as a potential source of repeat expansions in HD and other CAG/CTG repeat expansion disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745325PMC
http://dx.doi.org/10.1073/pnas.2408179122DOI Listing

Publication Analysis

Top Keywords

fragility instability
12
cag/ctg repeats
12
revealed a3a
8
cag/ctg repeat
8
repeat expansions
8
cag/ctg
7
repeat
6
a3a
6
hairpin
5
apobec3a deaminates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!