A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SchrödingerNet: A Universal Neural Network Solver for the Schrödinger Equation. | LitMetric

SchrödingerNet: A Universal Neural Network Solver for the Schrödinger Equation.

J Chem Theory Comput

Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States.

Published: January 2025

Recent advances in machine learning have facilitated numerically accurate solution of the electronic Schrödinger equation (SE) by integrating various neural network (NN)-based wave function ansatzes with variational Monte Carlo methods. Nevertheless, such NN-based methods are all based on the Born-Oppenheimer approximation (BOA) and require computationally expensive training for each nuclear configuration. In this work, we propose a novel NN architecture, SchrödingerNet, to solve the full electronic-nuclear SE by defining a loss function designed to equalize local energies across the system. This approach is based on a translationally, rotationally and permutationally symmetry-adapted total wave function ansatz that includes both nuclear and electronic coordinates. This strategy not only allows for an efficient and accurate generation of a continuous potential energy surface at any geometry within the well-sampled nuclear configuration space, but also incorporates non-BOA corrections, through a single training process. Comparison with benchmarks of atomic and small molecular systems demonstrates its accuracy and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c01287DOI Listing

Publication Analysis

Top Keywords

neural network
8
schrödinger equation
8
wave function
8
nuclear configuration
8
schrödingernet universal
4
universal neural
4
network solver
4
solver schrödinger
4
equation advances
4
advances machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!