Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Short hydrogen bonds (SHBs), characterized by donor-acceptor heteroatom separations below 2.7 Å, are prevalent in condensed-phase systems. Recently, we identified SHBs in nonaqueous binary mixtures of acetic acid and 1-methylimidazole (MIm), where electronic and nuclear quantum effects facilitate extensive proton delocalization. In this work, we explore the conditions favoring SHB formation in binary acid-base mixtures and propose that the difference in p values between the acid and base, measured in a nonaqueous, aprotic solvent like DMSO, is a key determinant. Using MIm as a model base, we perform electronic structure calculations to systematically analyze p matching across 97 acid-MIm pairs in DMSO solutions. Through a combination of first-principles simulations and infrared spectroscopy, we confirm the formation of SHBs and the delocalization of protons in benzoic acid-MIm and salicylic acid-MIm binary mixtures. Our results demonstrate that p matching can significantly alter proton behavior in nonaqueous systems, transforming acid-base interactions from conventional proton transfer to quantum mechanical proton delocalization. This work establishes DMSO as a valuable alternative to water for assessing p matching and highlights the importance of hydrogen bond networks in modulating these conditions. By elucidating the impact of electronic and nuclear quantum effects, our results provides insights for designing organic mixtures that leverage SHBs for advanced material applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.4c02187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!