β-GaO is a candidate semiconductor material for high-power electronics due to its ultrawide bandgap and high Baliga's figure of merit. However, its -type doping is extremely difficult because of its low and flat band dispersion at its valence band maximum (VBM). A few reports have predicted that the VBM of β-GaO can be enhanced via alloying a specific metal (M), which enables -type conduction. To fully understand the M regulation on the valence band of β-GaO, 49 different M-alloyed β-GaO , β-(MGa)O, are investigated in this work through first-principles calculations. The alloys' configurations and electronic structures are found dependent more on the group number of M. The β-(MGa)O members with Ms in groups 3, 9, 13, and 15 and the Ms of Be, Cr, and Fe are semiconductors. The VBMs' energies are enhanced by more than 1 in the β-(MGa)O for the Ms of Rh, Ir, Sb, and Bi because these VBMs are newly formed by the orbital hybridization of the Ms and neighboring oxygen atoms. The band dispersions at VBMs generally become steeper, especially for Ms in groups 13 and 15. The average hole effective mass in β-(AlGa)O is only 3.43% of that in the β-GaO. It is believed that the reduced hole effective mass and increased VBMs' energies make the -type doping easier in these alloys and the applications of the alloys wider.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c03493 | DOI Listing |
RSC Adv
January 2025
Department of Electrical and Electronic Engineering, International Islamic University Chittagong Kumira Chittagong 4318 Bangladesh
Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.
View Article and Find Full Text PDFFront Syst Neurosci
January 2025
International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy.
This study examines the impact of positive and negative feedback on recall of past decisions, focusing on behavioral performance and electrophysiological (EEG) responses. Participants completed a decision-making task involving 10 real-life scenarios, each followed by immediate positive or negative feedback. In a recall phase, participants' accuracy (ACC), errors (ERRs), and response times (RTs) were recorded alongside EEG data to analyze brain activity patterns related to recall.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-InSe).
View Article and Find Full Text PDFNanoscale
January 2025
Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
Two-dimensional materials with a combination of a moderate bandgap, highly anisotropic carrier mobility, and a planar structure are highly desirable for nanoelectronic devices. This study predicts a planar BeP monolayer with hexagonal symmetry that meets the aforementioned desirable criteria using the CALYPSO method and first-principles calculations. Calculations of electronic properties demonstrate that the hexagonal BeP monolayer is an intrinsic semiconductor with a direct band gap of approximately 0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia.
An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiO) are highly active and cheaper than precious metal catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!